| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \class TensorAssign |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief The tensor assignment class. |
| * |
| * This class is represents the assignment of the values resulting from the evaluation of |
| * the rhs expression to the memory locations denoted by the lhs expression. |
| */ |
| namespace internal { |
| template <typename LhsXprType, typename RhsXprType> |
| struct traits<TensorAssignOp<LhsXprType, RhsXprType> > { |
| typedef typename LhsXprType::Scalar Scalar; |
| typedef typename traits<LhsXprType>::StorageKind StorageKind; |
| typedef |
| typename promote_index_type<typename traits<LhsXprType>::Index, typename traits<RhsXprType>::Index>::type Index; |
| typedef typename LhsXprType::Nested LhsNested; |
| typedef typename RhsXprType::Nested RhsNested; |
| typedef std::remove_reference_t<LhsNested> LhsNested_; |
| typedef std::remove_reference_t<RhsNested> RhsNested_; |
| static constexpr std::size_t NumDimensions = internal::traits<LhsXprType>::NumDimensions; |
| static constexpr int Layout = internal::traits<LhsXprType>::Layout; |
| typedef typename traits<LhsXprType>::PointerType PointerType; |
| |
| enum { Flags = 0 }; |
| }; |
| |
| template <typename LhsXprType, typename RhsXprType> |
| struct eval<TensorAssignOp<LhsXprType, RhsXprType>, Eigen::Dense> { |
| typedef const TensorAssignOp<LhsXprType, RhsXprType>& type; |
| }; |
| |
| template <typename LhsXprType, typename RhsXprType> |
| struct nested<TensorAssignOp<LhsXprType, RhsXprType>, 1, typename eval<TensorAssignOp<LhsXprType, RhsXprType> >::type> { |
| typedef TensorAssignOp<LhsXprType, RhsXprType> type; |
| }; |
| |
| } // end namespace internal |
| |
| template <typename LhsXprType, typename RhsXprType> |
| class TensorAssignOp : public TensorBase<TensorAssignOp<LhsXprType, RhsXprType> > { |
| public: |
| typedef typename Eigen::internal::traits<TensorAssignOp>::Scalar Scalar; |
| typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; |
| typedef typename LhsXprType::CoeffReturnType CoeffReturnType; |
| typedef typename Eigen::internal::nested<TensorAssignOp>::type Nested; |
| typedef typename Eigen::internal::traits<TensorAssignOp>::StorageKind StorageKind; |
| typedef typename Eigen::internal::traits<TensorAssignOp>::Index Index; |
| |
| static constexpr int NumDims = Eigen::internal::traits<TensorAssignOp>::NumDimensions; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorAssignOp(LhsXprType& lhs, const RhsXprType& rhs) |
| : m_lhs_xpr(lhs), m_rhs_xpr(rhs) {} |
| |
| /** \returns the nested expressions */ |
| EIGEN_DEVICE_FUNC internal::remove_all_t<typename LhsXprType::Nested>& lhsExpression() const { |
| return *((internal::remove_all_t<typename LhsXprType::Nested>*)&m_lhs_xpr); |
| } |
| |
| EIGEN_DEVICE_FUNC const internal::remove_all_t<typename RhsXprType::Nested>& rhsExpression() const { |
| return m_rhs_xpr; |
| } |
| |
| protected: |
| internal::remove_all_t<typename LhsXprType::Nested>& m_lhs_xpr; |
| const internal::remove_all_t<typename RhsXprType::Nested>& m_rhs_xpr; |
| }; |
| |
| template <typename LeftArgType, typename RightArgType, typename Device> |
| struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device> { |
| typedef TensorAssignOp<LeftArgType, RightArgType> XprType; |
| typedef typename XprType::Index Index; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| typedef typename TensorEvaluator<RightArgType, Device>::Dimensions Dimensions; |
| typedef StorageMemory<CoeffReturnType, Device> Storage; |
| typedef typename Storage::Type EvaluatorPointerType; |
| |
| static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size; |
| static constexpr int NumDims = XprType::NumDims; |
| static constexpr int Layout = TensorEvaluator<LeftArgType, Device>::Layout; |
| |
| enum { |
| IsAligned = |
| int(TensorEvaluator<LeftArgType, Device>::IsAligned) & int(TensorEvaluator<RightArgType, Device>::IsAligned), |
| PacketAccess = int(TensorEvaluator<LeftArgType, Device>::PacketAccess) & |
| int(TensorEvaluator<RightArgType, Device>::PacketAccess), |
| BlockAccess = int(TensorEvaluator<LeftArgType, Device>::BlockAccess) & |
| int(TensorEvaluator<RightArgType, Device>::BlockAccess), |
| PreferBlockAccess = int(TensorEvaluator<LeftArgType, Device>::PreferBlockAccess) | |
| int(TensorEvaluator<RightArgType, Device>::PreferBlockAccess), |
| RawAccess = TensorEvaluator<LeftArgType, Device>::RawAccess |
| }; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; |
| typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; |
| |
| typedef typename TensorEvaluator<const RightArgType, Device>::TensorBlock RightTensorBlock; |
| //===--------------------------------------------------------------------===// |
| |
| TensorEvaluator(const XprType& op, const Device& device) |
| : m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device) { |
| EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == |
| static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)), |
| YOU_MADE_A_PROGRAMMING_MISTAKE); |
| } |
| |
| EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { |
| // The dimensions of the lhs and the rhs tensors should be equal to prevent |
| // overflows and ensure the result is fully initialized. |
| // TODO: use left impl instead if right impl dimensions are known at compile time. |
| return m_rightImpl.dimensions(); |
| } |
| |
| EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { |
| eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions())); |
| m_leftImpl.evalSubExprsIfNeeded(NULL); |
| // If the lhs provides raw access to its storage area (i.e. if m_leftImpl.data() returns a non |
| // null value), attempt to evaluate the rhs expression in place. Returns true iff in place |
| // evaluation isn't supported and the caller still needs to manually assign the values generated |
| // by the rhs to the lhs. |
| return m_rightImpl.evalSubExprsIfNeeded(m_leftImpl.data()); |
| } |
| |
| #ifdef EIGEN_USE_THREADS |
| template <typename EvalSubExprsCallback> |
| EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType, EvalSubExprsCallback done) { |
| m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done](bool) { |
| m_rightImpl.evalSubExprsIfNeededAsync(m_leftImpl.data(), [done](bool need_assign) { done(need_assign); }); |
| }); |
| } |
| #endif // EIGEN_USE_THREADS |
| |
| EIGEN_STRONG_INLINE void cleanup() { |
| m_leftImpl.cleanup(); |
| m_rightImpl.cleanup(); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) const { |
| m_leftImpl.coeffRef(i) = m_rightImpl.coeff(i); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) const { |
| const int LhsStoreMode = TensorEvaluator<LeftArgType, Device>::IsAligned ? Aligned : Unaligned; |
| const int RhsLoadMode = TensorEvaluator<RightArgType, Device>::IsAligned ? Aligned : Unaligned; |
| m_leftImpl.template writePacket<LhsStoreMode>(i, m_rightImpl.template packet<RhsLoadMode>(i)); |
| } |
| EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const { return m_leftImpl.coeff(index); } |
| template <int LoadMode> |
| EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const { |
| return m_leftImpl.template packet<LoadMode>(index); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { |
| // We assume that evalPacket or evalScalar is called to perform the |
| // assignment and account for the cost of the write here, but reduce left |
| // cost by one load because we are using m_leftImpl.coeffRef. |
| TensorOpCost left = m_leftImpl.costPerCoeff(vectorized); |
| return m_rightImpl.costPerCoeff(vectorized) + |
| TensorOpCost(numext::maxi(0.0, left.bytes_loaded() - sizeof(CoeffReturnType)), left.bytes_stored(), |
| left.compute_cycles()) + |
| TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const { |
| return internal::TensorBlockResourceRequirements::merge(m_leftImpl.getResourceRequirements(), |
| m_rightImpl.getResourceRequirements()); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalBlock(TensorBlockDesc& desc, TensorBlockScratch& scratch) { |
| if (TensorEvaluator<LeftArgType, Device>::RawAccess && m_leftImpl.data() != NULL) { |
| // If destination has raw data access, we pass it as a potential |
| // destination for a block descriptor evaluation. |
| desc.template AddDestinationBuffer<Layout>( |
| /*dst_base=*/m_leftImpl.data() + desc.offset(), |
| /*dst_strides=*/internal::strides<Layout>(m_leftImpl.dimensions())); |
| } |
| |
| RightTensorBlock block = m_rightImpl.block(desc, scratch, /*root_of_expr_ast=*/true); |
| // If block was evaluated into a destination, there is no need to do assignment. |
| if (block.kind() != internal::TensorBlockKind::kMaterializedInOutput) { |
| m_leftImpl.writeBlock(desc, block); |
| } |
| block.cleanup(); |
| } |
| |
| EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_leftImpl.data(); } |
| |
| private: |
| TensorEvaluator<LeftArgType, Device> m_leftImpl; |
| TensorEvaluator<RightArgType, Device> m_rightImpl; |
| }; |
| |
| } // namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H |