| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \class TensorDevice |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief Pseudo expression providing an operator = that will evaluate its argument |
| * on the specified computing 'device' (GPU, thread pool, ...) |
| * |
| * Example: |
| * C.device(EIGEN_GPU) = A + B; |
| * |
| * Todo: operator *= and /=. |
| */ |
| |
| template <typename ExpressionType, typename DeviceType> |
| class TensorDevice { |
| public: |
| TensorDevice(const DeviceType& device, ExpressionType& expression) : m_device(device), m_expression(expression) {} |
| |
| EIGEN_DEFAULT_COPY_CONSTRUCTOR(TensorDevice) |
| |
| template <typename OtherDerived> |
| EIGEN_STRONG_INLINE TensorDevice& operator=(const OtherDerived& other) { |
| typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign; |
| Assign assign(m_expression, other); |
| internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device); |
| return *this; |
| } |
| |
| template <typename OtherDerived> |
| EIGEN_STRONG_INLINE TensorDevice& operator+=(const OtherDerived& other) { |
| typedef typename OtherDerived::Scalar Scalar; |
| typedef TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ExpressionType, const OtherDerived> Sum; |
| Sum sum(m_expression, other); |
| typedef TensorAssignOp<ExpressionType, const Sum> Assign; |
| Assign assign(m_expression, sum); |
| internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device); |
| return *this; |
| } |
| |
| template <typename OtherDerived> |
| EIGEN_STRONG_INLINE TensorDevice& operator-=(const OtherDerived& other) { |
| typedef typename OtherDerived::Scalar Scalar; |
| typedef TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const ExpressionType, const OtherDerived> |
| Difference; |
| Difference difference(m_expression, other); |
| typedef TensorAssignOp<ExpressionType, const Difference> Assign; |
| Assign assign(m_expression, difference); |
| internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device); |
| return *this; |
| } |
| |
| protected: |
| const DeviceType& m_device; |
| ExpressionType& m_expression; |
| }; |
| |
| /** \class TensorAsyncDevice |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief Pseudo expression providing an operator = that will evaluate its |
| * argument asynchronously on the specified device. Currently only |
| * ThreadPoolDevice implements proper asynchronous execution, while the default |
| * and GPU devices just run the expression synchronously and call m_done() on |
| * completion.. |
| * |
| * Example: |
| * auto done = []() { ... expression evaluation done ... }; |
| * C.device(thread_pool_device, std::move(done)) = A + B; |
| */ |
| |
| template <typename ExpressionType, typename DeviceType, typename DoneCallback> |
| class TensorAsyncDevice { |
| public: |
| TensorAsyncDevice(const DeviceType& device, ExpressionType& expression, DoneCallback done) |
| : m_device(device), m_expression(expression), m_done(std::move(done)) {} |
| |
| template <typename OtherDerived> |
| EIGEN_STRONG_INLINE TensorAsyncDevice& operator=(const OtherDerived& other) { |
| typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign; |
| typedef internal::TensorExecutor<const Assign, DeviceType> Executor; |
| |
| Assign assign(m_expression, other); |
| Executor::run(assign, m_device); |
| m_done(); |
| |
| return *this; |
| } |
| |
| protected: |
| const DeviceType& m_device; |
| ExpressionType& m_expression; |
| DoneCallback m_done; |
| }; |
| |
| #ifdef EIGEN_USE_THREADS |
| template <typename ExpressionType, typename DoneCallback> |
| class TensorAsyncDevice<ExpressionType, ThreadPoolDevice, DoneCallback> { |
| public: |
| TensorAsyncDevice(const ThreadPoolDevice& device, ExpressionType& expression, DoneCallback done) |
| : m_device(device), m_expression(expression), m_done(std::move(done)) {} |
| |
| template <typename OtherDerived> |
| EIGEN_STRONG_INLINE TensorAsyncDevice& operator=(const OtherDerived& other) { |
| typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign; |
| typedef internal::TensorAsyncExecutor<const Assign, ThreadPoolDevice, DoneCallback> Executor; |
| |
| // WARNING: After assignment 'm_done' callback will be in undefined state. |
| Assign assign(m_expression, other); |
| Executor::runAsync(assign, m_device, std::move(m_done)); |
| |
| return *this; |
| } |
| |
| protected: |
| const ThreadPoolDevice& m_device; |
| ExpressionType& m_expression; |
| DoneCallback m_done; |
| }; |
| #endif |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H |