| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \class TensorForcedEval |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief Tensor reshaping class. |
| * |
| * |
| */ |
| namespace internal { |
| template <typename XprType, template <class> class MakePointer_> |
| struct traits<TensorEvalToOp<XprType, MakePointer_> > { |
| // Type promotion to handle the case where the types of the lhs and the rhs are different. |
| typedef typename XprType::Scalar Scalar; |
| typedef traits<XprType> XprTraits; |
| typedef typename XprTraits::StorageKind StorageKind; |
| typedef typename XprTraits::Index Index; |
| typedef typename XprType::Nested Nested; |
| typedef std::remove_reference_t<Nested> Nested_; |
| static constexpr int NumDimensions = XprTraits::NumDimensions; |
| static constexpr int Layout = XprTraits::Layout; |
| typedef typename MakePointer_<Scalar>::Type PointerType; |
| |
| enum { Flags = 0 }; |
| template <class T> |
| struct MakePointer { |
| // Intermediate typedef to workaround MSVC issue. |
| typedef MakePointer_<T> MakePointerT; |
| typedef typename MakePointerT::Type Type; |
| }; |
| }; |
| |
| template <typename XprType, template <class> class MakePointer_> |
| struct eval<TensorEvalToOp<XprType, MakePointer_>, Eigen::Dense> { |
| typedef const TensorEvalToOp<XprType, MakePointer_>& type; |
| }; |
| |
| template <typename XprType, template <class> class MakePointer_> |
| struct nested<TensorEvalToOp<XprType, MakePointer_>, 1, typename eval<TensorEvalToOp<XprType, MakePointer_> >::type> { |
| typedef TensorEvalToOp<XprType, MakePointer_> type; |
| }; |
| |
| } // end namespace internal |
| |
| template <typename XprType, template <class> class MakePointer_> |
| class TensorEvalToOp : public TensorBase<TensorEvalToOp<XprType, MakePointer_>, ReadOnlyAccessors> { |
| public: |
| typedef typename Eigen::internal::traits<TensorEvalToOp>::Scalar Scalar; |
| typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; |
| typedef std::remove_const_t<typename XprType::CoeffReturnType> CoeffReturnType; |
| typedef typename MakePointer_<CoeffReturnType>::Type PointerType; |
| typedef typename Eigen::internal::nested<TensorEvalToOp>::type Nested; |
| typedef typename Eigen::internal::traits<TensorEvalToOp>::StorageKind StorageKind; |
| typedef typename Eigen::internal::traits<TensorEvalToOp>::Index Index; |
| |
| static constexpr int NumDims = Eigen::internal::traits<TensorEvalToOp>::NumDimensions; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvalToOp(PointerType buffer, const XprType& expr) |
| : m_xpr(expr), m_buffer(buffer) {} |
| |
| EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; } |
| |
| EIGEN_DEVICE_FUNC PointerType buffer() const { return m_buffer; } |
| |
| protected: |
| typename XprType::Nested m_xpr; |
| PointerType m_buffer; |
| }; |
| |
| template <typename ArgType, typename Device, template <class> class MakePointer_> |
| struct TensorEvaluator<const TensorEvalToOp<ArgType, MakePointer_>, Device> { |
| typedef TensorEvalToOp<ArgType, MakePointer_> XprType; |
| typedef typename ArgType::Scalar Scalar; |
| typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; |
| typedef typename XprType::Index Index; |
| typedef std::remove_const_t<typename XprType::CoeffReturnType> CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size; |
| typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType; |
| typedef StorageMemory<CoeffReturnType, Device> Storage; |
| typedef typename Storage::Type EvaluatorPointerType; |
| enum { |
| IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, |
| PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, |
| BlockAccess = true, |
| PreferBlockAccess = false, |
| CoordAccess = false, // to be implemented |
| RawAccess = true |
| }; |
| |
| static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout; |
| static constexpr int NumDims = internal::traits<ArgType>::NumDimensions; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; |
| typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; |
| |
| typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock ArgTensorBlock; |
| |
| typedef internal::TensorBlockAssignment<CoeffReturnType, NumDims, typename ArgTensorBlock::XprType, Index> |
| TensorBlockAssignment; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) |
| : m_impl(op.expression(), device), m_buffer(device.get(op.buffer())), m_expression(op.expression()) {} |
| |
| EIGEN_STRONG_INLINE ~TensorEvaluator() {} |
| |
| EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); } |
| |
| EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType scalar) { |
| EIGEN_UNUSED_VARIABLE(scalar); |
| eigen_assert(scalar == NULL); |
| return m_impl.evalSubExprsIfNeeded(m_buffer); |
| } |
| |
| #ifdef EIGEN_USE_THREADS |
| template <typename EvalSubExprsCallback> |
| EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType scalar, EvalSubExprsCallback done) { |
| EIGEN_UNUSED_VARIABLE(scalar); |
| eigen_assert(scalar == NULL); |
| m_impl.evalSubExprsIfNeededAsync(m_buffer, std::move(done)); |
| } |
| #endif |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) const { m_buffer[i] = m_impl.coeff(i); } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) const { |
| internal::pstoret<CoeffReturnType, PacketReturnType, Aligned>( |
| m_buffer + i, m_impl.template packet < TensorEvaluator<ArgType, Device>::IsAligned ? Aligned : Unaligned > (i)); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const { |
| return m_impl.getResourceRequirements(); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalBlock(TensorBlockDesc& desc, TensorBlockScratch& scratch) { |
| // Add `m_buffer` as destination buffer to the block descriptor. |
| desc.template AddDestinationBuffer<Layout>( |
| /*dst_base=*/m_buffer + desc.offset(), |
| /*dst_strides=*/internal::strides<Layout>(m_impl.dimensions())); |
| |
| ArgTensorBlock block = m_impl.block(desc, scratch, /*root_of_expr_ast=*/true); |
| |
| // If block was evaluated into a destination buffer, there is no need to do |
| // an assignment. |
| if (block.kind() != internal::TensorBlockKind::kMaterializedInOutput) { |
| TensorBlockAssignment::Run( |
| TensorBlockAssignment::target(desc.dimensions(), internal::strides<Layout>(m_impl.dimensions()), m_buffer, |
| desc.offset()), |
| block.expr()); |
| } |
| block.cleanup(); |
| } |
| |
| EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_buffer[index]; } |
| |
| template <int LoadMode> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { |
| return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { |
| // We assume that evalPacket or evalScalar is called to perform the |
| // assignment and account for the cost of the write here. |
| return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize); |
| } |
| |
| EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_buffer; } |
| ArgType expression() const { return m_expression; } |
| |
| private: |
| TensorEvaluator<ArgType, Device> m_impl; |
| EvaluatorPointerType m_buffer; |
| const ArgType m_expression; |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H |