blob: f81e59db5837cd14de887946bece2a1f1a84a306 [file] [log] [blame]
/***************************************************************************
* Copyright (C) 2017 Codeplay Software Limited
* This Source Code Form is subject to the terms of the Mozilla
* Public License v. 2.0. If a copy of the MPL was not distributed
* with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
*
* SyclMemoryModel.h
*
* Description:
* Interface for SYCL buffers to behave as a non-dereferenceable pointer
* Interface for Placeholder accessor to behave as a pointer on both host
* and device
*
* Authors:
*
* Ruyman Reyes Codeplay Software Ltd.
* Mehdi Goli Codeplay Software Ltd.
* Vanya Yaneva Codeplay Software Ltd.
*
**************************************************************************/
#if defined(EIGEN_USE_SYCL) && \
!defined(EIGEN_CXX11_TENSOR_TENSOR_SYCL_STORAGE_MEMORY_H)
#define EIGEN_CXX11_TENSOR_TENSOR_SYCL_STORAGE_MEMORY_H
#include <CL/sycl.hpp>
#ifdef EIGEN_EXCEPTIONS
#include <stdexcept>
#endif
#include <cstddef>
#include <queue>
#include <set>
#include <unordered_map>
namespace Eigen {
namespace TensorSycl {
namespace internal {
using sycl_acc_target = cl::sycl::access::target;
using sycl_acc_mode = cl::sycl::access::mode;
/**
* Default values for template arguments
*/
using buffer_data_type_t = uint8_t;
const sycl_acc_target default_acc_target = sycl_acc_target::global_buffer;
const sycl_acc_mode default_acc_mode = sycl_acc_mode::read_write;
/**
* PointerMapper
* Associates fake pointers with buffers.
*
*/
class PointerMapper {
public:
using base_ptr_t = std::intptr_t;
/* Structure of a virtual pointer
*
* |================================================|
* | POINTER ADDRESS |
* |================================================|
*/
struct virtual_pointer_t {
/* Type for the pointers
*/
base_ptr_t m_contents;
/** Conversions from virtual_pointer_t to
* void * should just reinterpret_cast the integer number
*/
operator void *() const { return reinterpret_cast<void *>(m_contents); }
/**
* Convert back to the integer number.
*/
operator base_ptr_t() const { return m_contents; }
/**
* Add a certain value to the pointer to create a
* new pointer to that offset
*/
virtual_pointer_t operator+(size_t off) { return m_contents + off; }
/* Numerical order for sorting pointers in containers. */
bool operator<(virtual_pointer_t rhs) const {
return (static_cast<base_ptr_t>(m_contents) <
static_cast<base_ptr_t>(rhs.m_contents));
}
bool operator>(virtual_pointer_t rhs) const {
return (static_cast<base_ptr_t>(m_contents) >
static_cast<base_ptr_t>(rhs.m_contents));
}
/**
* Numerical order for sorting pointers in containers
*/
bool operator==(virtual_pointer_t rhs) const {
return (static_cast<base_ptr_t>(m_contents) ==
static_cast<base_ptr_t>(rhs.m_contents));
}
/**
* Simple forward to the equality overload.
*/
bool operator!=(virtual_pointer_t rhs) const {
return !(this->operator==(rhs));
}
/**
* Converts a void * into a virtual pointer structure.
* Note that this will only work if the void * was
* already a virtual_pointer_t, but we have no way of
* checking
*/
virtual_pointer_t(const void *ptr)
: m_contents(reinterpret_cast<base_ptr_t>(ptr)){};
/**
* Creates a virtual_pointer_t from the given integer
* number
*/
virtual_pointer_t(base_ptr_t u) : m_contents(u){};
};
/* Definition of a null pointer
*/
const virtual_pointer_t null_virtual_ptr = nullptr;
/**
* Whether if a pointer is null or not.
* A pointer is nullptr if the value is of null_virtual_ptr
*/
static inline bool is_nullptr(virtual_pointer_t ptr) {
return (static_cast<void *>(ptr) == nullptr);
}
/* basic type for all buffers
*/
using buffer_t = cl::sycl::buffer_mem;
/**
* Node that stores information about a device allocation.
* Nodes are sorted by size to organise a free list of nodes
* that can be recovered.
*/
struct pMapNode_t {
buffer_t m_buffer;
size_t m_size;
bool m_free;
pMapNode_t(buffer_t b, size_t size, bool f)
: m_buffer{b}, m_size{size}, m_free{f} {
m_buffer.set_final_data(nullptr);
}
bool operator<=(const pMapNode_t &rhs) { return (m_size <= rhs.m_size); }
};
/** Storage of the pointer / buffer tree
*/
using pointerMap_t = std::map<virtual_pointer_t, pMapNode_t>;
/**
* Obtain the insertion point in the pointer map for
* a pointer of the given size.
* \param requiredSize Size attemted to reclaim
*/
typename pointerMap_t::iterator get_insertion_point(size_t requiredSize) {
typename pointerMap_t::iterator retVal;
bool reuse = false;
if (!m_freeList.empty()) {
// try to re-use an existing block
for (auto freeElem : m_freeList) {
if (freeElem->second.m_size >= requiredSize) {
retVal = freeElem;
reuse = true;
// Element is not going to be free anymore
m_freeList.erase(freeElem);
break;
}
}
}
if (!reuse) {
retVal = std::prev(m_pointerMap.end());
}
return retVal;
}
/**
* Returns an iterator to the node that stores the information
* of the given virtual pointer from the given pointer map structure.
* If pointer is not found, throws std::out_of_range.
* If the pointer map structure is empty, throws std::out_of_range
*
* \param pMap the pointerMap_t structure storing all the pointers
* \param virtual_pointer_ptr The virtual pointer to obtain the node of
* \throws std::out:of_range if the pointer is not found or pMap is empty
*/
typename pointerMap_t::iterator get_node(const virtual_pointer_t ptr) {
if (this->count() == 0) {
m_pointerMap.clear();
EIGEN_THROW_X(std::out_of_range("There are no pointers allocated\n"));
}
if (is_nullptr(ptr)) {
m_pointerMap.clear();
EIGEN_THROW_X(std::out_of_range("Cannot access null pointer\n"));
}
// The previous element to the lower bound is the node that
// holds this memory address
auto node = m_pointerMap.lower_bound(ptr);
// If the value of the pointer is not the one of the node
// then we return the previous one
if (node == std::end(m_pointerMap)) {
--node;
} else if (node->first != ptr) {
if (node == std::begin(m_pointerMap)) {
m_pointerMap.clear();
EIGEN_THROW_X(
std::out_of_range("The pointer is not registered in the map\n"));
}
--node;
}
return node;
}
/* get_buffer.
* Returns a buffer from the map using the pointer address
*/
template <typename buffer_data_type = buffer_data_type_t>
cl::sycl::buffer<buffer_data_type, 1> get_buffer(
const virtual_pointer_t ptr) {
using sycl_buffer_t = cl::sycl::buffer<buffer_data_type, 1>;
// get_node() returns a `buffer_mem`, so we need to cast it to a `buffer<>`.
// We can do this without the `buffer_mem` being a pointer, as we
// only declare member variables in the base class (`buffer_mem`) and not in
// the child class (`buffer<>).
auto node = get_node(ptr);
eigen_assert(node->first == ptr || node->first < ptr);
eigen_assert(ptr < static_cast<virtual_pointer_t>(node->second.m_size +
node->first));
return *(static_cast<sycl_buffer_t *>(&node->second.m_buffer));
}
/**
* @brief Returns an accessor to the buffer of the given virtual pointer
* @param accessMode
* @param accessTarget
* @param ptr The virtual pointer
*/
template <sycl_acc_mode access_mode = default_acc_mode,
sycl_acc_target access_target = default_acc_target,
typename buffer_data_type = buffer_data_type_t>
cl::sycl::accessor<buffer_data_type, 1, access_mode, access_target>
get_access(const virtual_pointer_t ptr) {
auto buf = get_buffer<buffer_data_type>(ptr);
return buf.template get_access<access_mode, access_target>();
}
/**
* @brief Returns an accessor to the buffer of the given virtual pointer
* in the given command group scope
* @param accessMode
* @param accessTarget
* @param ptr The virtual pointer
* @param cgh Reference to the command group scope
*/
template <sycl_acc_mode access_mode = default_acc_mode,
sycl_acc_target access_target = default_acc_target,
typename buffer_data_type = buffer_data_type_t>
cl::sycl::accessor<buffer_data_type, 1, access_mode, access_target>
get_access(const virtual_pointer_t ptr, cl::sycl::handler &cgh) {
auto buf = get_buffer<buffer_data_type>(ptr);
return buf.template get_access<access_mode, access_target>(cgh);
}
/*
* Returns the offset from the base address of this pointer.
*/
inline std::ptrdiff_t get_offset(const virtual_pointer_t ptr) {
// The previous element to the lower bound is the node that
// holds this memory address
auto node = get_node(ptr);
auto start = node->first;
eigen_assert(start == ptr || start < ptr);
eigen_assert(ptr < start + node->second.m_size);
return (ptr - start);
}
/*
* Returns the number of elements by which the given pointer is offset from
* the base address.
*/
template <typename buffer_data_type>
inline size_t get_element_offset(const virtual_pointer_t ptr) {
return get_offset(ptr) / sizeof(buffer_data_type);
}
/**
* Constructs the PointerMapper structure.
*/
PointerMapper(base_ptr_t baseAddress = 4096)
: m_pointerMap{}, m_freeList{}, m_baseAddress{baseAddress} {
if (m_baseAddress == 0) {
EIGEN_THROW_X(std::invalid_argument("Base address cannot be zero\n"));
}
};
/**
* PointerMapper cannot be copied or moved
*/
PointerMapper(const PointerMapper &) = delete;
/**
* Empty the pointer list
*/
inline void clear() {
m_freeList.clear();
m_pointerMap.clear();
}
/* add_pointer.
* Adds an existing pointer to the map and returns the virtual pointer id.
*/
inline virtual_pointer_t add_pointer(const buffer_t &b) {
return add_pointer_impl(b);
}
/* add_pointer.
* Adds a pointer to the map and returns the virtual pointer id.
*/
inline virtual_pointer_t add_pointer(buffer_t &&b) {
return add_pointer_impl(b);
}
/**
* @brief Fuses the given node with the previous nodes in the
* pointer map if they are free
*
* @param node A reference to the free node to be fused
*/
void fuse_forward(typename pointerMap_t::iterator &node) {
while (node != std::prev(m_pointerMap.end())) {
// if following node is free
// remove it and extend the current node with its size
auto fwd_node = std::next(node);
if (!fwd_node->second.m_free) {
break;
}
auto fwd_size = fwd_node->second.m_size;
m_freeList.erase(fwd_node);
m_pointerMap.erase(fwd_node);
node->second.m_size += fwd_size;
}
}
/**
* @brief Fuses the given node with the following nodes in the
* pointer map if they are free
*
* @param node A reference to the free node to be fused
*/
void fuse_backward(typename pointerMap_t::iterator &node) {
while (node != m_pointerMap.begin()) {
// if previous node is free, extend it
// with the size of the current one
auto prev_node = std::prev(node);
if (!prev_node->second.m_free) {
break;
}
prev_node->second.m_size += node->second.m_size;
// remove the current node
m_freeList.erase(node);
m_pointerMap.erase(node);
// point to the previous node
node = prev_node;
}
}
/* remove_pointer.
* Removes the given pointer from the map.
* The pointer is allowed to be reused only if ReUse if true.
*/
template <bool ReUse = true>
void remove_pointer(const virtual_pointer_t ptr) {
if (is_nullptr(ptr)) {
return;
}
auto node = this->get_node(ptr);
node->second.m_free = true;
m_freeList.emplace(node);
// Fuse the node
// with free nodes before and after it
fuse_forward(node);
fuse_backward(node);
// If after fusing the node is the last one
// simply remove it (since it is free)
if (node == std::prev(m_pointerMap.end())) {
m_freeList.erase(node);
m_pointerMap.erase(node);
}
}
/* count.
* Return the number of active pointers (i.e, pointers that
* have been malloc but not freed).
*/
size_t count() const { return (m_pointerMap.size() - m_freeList.size()); }
private:
/* add_pointer_impl.
* Adds a pointer to the map and returns the virtual pointer id.
* BufferT is either a const buffer_t& or a buffer_t&&.
*/
template <class BufferT>
virtual_pointer_t add_pointer_impl(BufferT b) {
virtual_pointer_t retVal = nullptr;
size_t bufSize = b.get_count();
pMapNode_t p{b, bufSize, false};
// If this is the first pointer:
if (m_pointerMap.empty()) {
virtual_pointer_t initialVal{m_baseAddress};
m_pointerMap.emplace(initialVal, p);
return initialVal;
}
auto lastElemIter = get_insertion_point(bufSize);
// We are recovering an existing free node
if (lastElemIter->second.m_free) {
lastElemIter->second.m_buffer = b;
lastElemIter->second.m_free = false;
// If the recovered node is bigger than the inserted one
// add a new free node with the remaining space
if (lastElemIter->second.m_size > bufSize) {
// create a new node with the remaining space
auto remainingSize = lastElemIter->second.m_size - bufSize;
pMapNode_t p2{b, remainingSize, true};
// update size of the current node
lastElemIter->second.m_size = bufSize;
// add the new free node
auto newFreePtr = lastElemIter->first + bufSize;
auto freeNode = m_pointerMap.emplace(newFreePtr, p2).first;
m_freeList.emplace(freeNode);
}
retVal = lastElemIter->first;
} else {
size_t lastSize = lastElemIter->second.m_size;
retVal = lastElemIter->first + lastSize;
m_pointerMap.emplace(retVal, p);
}
return retVal;
}
/**
* Compare two iterators to pointer map entries according to
* the size of the allocation on the device.
*/
struct SortBySize {
bool operator()(typename pointerMap_t::iterator a,
typename pointerMap_t::iterator b) const {
return ((a->first < b->first) && (a->second <= b->second)) ||
((a->first < b->first) && (b->second <= a->second));
}
};
/* Maps the pointer addresses to buffer and size pairs.
*/
pointerMap_t m_pointerMap;
/* List of free nodes available for re-using
*/
std::set<typename pointerMap_t::iterator, SortBySize> m_freeList;
/* Base address used when issuing the first virtual pointer, allows users
* to specify alignment. Cannot be zero. */
std::intptr_t m_baseAddress;
};
/* remove_pointer.
* Removes the given pointer from the map.
* The pointer is allowed to be reused only if ReUse if true.
*/
template <>
inline void PointerMapper::remove_pointer<false>(const virtual_pointer_t ptr) {
if (is_nullptr(ptr)) {
return;
}
m_pointerMap.erase(this->get_node(ptr));
}
/**
* Malloc-like interface to the pointer-mapper.
* Given a size, creates a byte-typed buffer and returns a
* fake pointer to keep track of it.
* \param size Size in bytes of the desired allocation
* \throw cl::sycl::exception if error while creating the buffer
*/
inline void *SYCLmalloc(size_t size, PointerMapper &pMap) {
if (size == 0) {
return nullptr;
}
// Create a generic buffer of the given size
using buffer_t = cl::sycl::buffer<buffer_data_type_t, 1>;
auto thePointer = pMap.add_pointer(buffer_t(cl::sycl::range<1>{size}));
// Store the buffer on the global list
return static_cast<void *>(thePointer);
}
/**
* Free-like interface to the pointer mapper.
* Given a fake-pointer created with the virtual-pointer malloc,
* destroys the buffer and remove it from the list.
* If ReUse is false, the pointer is not added to the freeList,
* it should be false only for sub-buffers.
*/
template <bool ReUse = true, typename PointerMapper>
inline void SYCLfree(void *ptr, PointerMapper &pMap) {
pMap.template remove_pointer<ReUse>(ptr);
}
/**
* Clear all the memory allocated by SYCL.
*/
template <typename PointerMapper>
inline void SYCLfreeAll(PointerMapper &pMap) {
pMap.clear();
}
template <cl::sycl::access::mode AcMd, typename T>
struct RangeAccess {
static const auto global_access = cl::sycl::access::target::global_buffer;
static const auto is_place_holder = cl::sycl::access::placeholder::true_t;
typedef T scalar_t;
typedef scalar_t &ref_t;
typedef typename cl::sycl::global_ptr<scalar_t>::pointer_t ptr_t;
// the accessor type does not necessarily the same as T
typedef cl::sycl::accessor<scalar_t, 1, AcMd, global_access, is_place_holder>
accessor;
typedef RangeAccess<AcMd, T> self_t;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE RangeAccess(accessor access,
size_t offset,
std::intptr_t virtual_ptr)
: access_(access), offset_(offset), virtual_ptr_(virtual_ptr) {}
RangeAccess(cl::sycl::buffer<scalar_t, 1> buff =
cl::sycl::buffer<scalar_t, 1>(cl::sycl::range<1>(1)))
: access_{accessor{buff}}, offset_(0), virtual_ptr_(-1) {}
// This should be only used for null constructor on the host side
RangeAccess(std::nullptr_t) : RangeAccess() {}
// This template parameter must be removed and scalar_t should be replaced
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ptr_t get_pointer() const {
return (access_.get_pointer().get() + offset_);
}
template <typename Index>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE self_t &operator+=(Index offset) {
offset_ += (offset);
return *this;
}
template <typename Index>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE self_t operator+(Index offset) const {
return self_t(access_, offset_ + offset, virtual_ptr_);
}
template <typename Index>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE self_t operator-(Index offset) const {
return self_t(access_, offset_ - offset, virtual_ptr_);
}
template <typename Index>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE self_t &operator-=(Index offset) {
offset_ -= offset;
return *this;
}
// THIS IS FOR NULL COMPARISON ONLY
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend bool operator==(
const RangeAccess &lhs, std::nullptr_t) {
return ((lhs.virtual_ptr_ == -1));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend bool operator!=(
const RangeAccess &lhs, std::nullptr_t i) {
return !(lhs == i);
}
// THIS IS FOR NULL COMPARISON ONLY
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend bool operator==(
std::nullptr_t, const RangeAccess &rhs) {
return ((rhs.virtual_ptr_ == -1));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend bool operator!=(
std::nullptr_t i, const RangeAccess &rhs) {
return !(i == rhs);
}
// Prefix operator (Increment and return value)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE self_t &operator++() {
offset_++;
return (*this);
}
// Postfix operator (Return value and increment)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE self_t operator++(int i) {
EIGEN_UNUSED_VARIABLE(i);
self_t temp_iterator(*this);
offset_++;
return temp_iterator;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t get_size() const {
return (access_.get_count() - offset_);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t get_offset() const {
return offset_;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void set_offset(std::ptrdiff_t offset) {
offset_ = offset;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ref_t operator*() const {
return *get_pointer();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ref_t operator*() {
return *get_pointer();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ptr_t operator->() = delete;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ref_t operator[](int x) {
return *(get_pointer() + x);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ref_t operator[](int x) const {
return *(get_pointer() + x);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_t *get_virtual_pointer() const {
return reinterpret_cast<scalar_t *>(virtual_ptr_ +
(offset_ * sizeof(scalar_t)));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit operator bool() const {
return (virtual_ptr_ != -1);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE operator RangeAccess<AcMd, const T>() {
return RangeAccess<AcMd, const T>(access_, offset_, virtual_ptr_);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
operator RangeAccess<AcMd, const T>() const {
return RangeAccess<AcMd, const T>(access_, offset_, virtual_ptr_);
}
// binding placeholder accessors to a command group handler for SYCL
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(
cl::sycl::handler &cgh) const {
cgh.require(access_);
}
private:
accessor access_;
size_t offset_;
std::intptr_t virtual_ptr_; // the location of the buffer in the map
};
template <cl::sycl::access::mode AcMd, typename T>
struct RangeAccess<AcMd, const T> : RangeAccess<AcMd, T> {
typedef RangeAccess<AcMd, T> Base;
using Base::Base;
};
} // namespace internal
} // namespace TensorSycl
} // namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_SYCL_STORAGE_MEMORY_H