blob: d17aaf9c9b141ff5a0353071a7abf8ab78ce13d3 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_UNARY_FUNCTORS_H
#define EIGEN_UNARY_FUNCTORS_H
namespace Eigen {
namespace internal {
/** \internal
* \brief Template functor to compute the opposite of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::operator-
*/
template<typename Scalar> struct scalar_opposite_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pnegate(a); }
};
template<typename Scalar>
struct functor_traits<scalar_opposite_op<Scalar> >
{ enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasNegate };
};
/** \internal
* \brief Template functor to compute the absolute value of a scalar
*
* \sa class CwiseUnaryOp, Cwise::abs
*/
template<typename Scalar> struct scalar_abs_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs(a); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pabs(a); }
};
template<typename Scalar>
struct functor_traits<scalar_abs_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasAbs
};
};
/** \internal
* \brief Template functor to compute the score of a scalar, to chose a pivot
*
* \sa class CwiseUnaryOp
*/
template<typename Scalar> struct scalar_score_coeff_op : scalar_abs_op<Scalar>
{
typedef void Score_is_abs;
};
template<typename Scalar>
struct functor_traits<scalar_score_coeff_op<Scalar> > : functor_traits<scalar_abs_op<Scalar> > {};
/* Avoid recomputing abs when we know the score and they are the same. Not a true Eigen functor. */
template<typename Scalar, typename=void> struct abs_knowing_score
{
EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score)
typedef typename NumTraits<Scalar>::Real result_type;
template<typename Score>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a, const Score&) const { return numext::abs(a); }
};
template<typename Scalar> struct abs_knowing_score<Scalar, typename scalar_score_coeff_op<Scalar>::Score_is_abs>
{
EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score)
typedef typename NumTraits<Scalar>::Real result_type;
template<typename Scal>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scal&, const result_type& a) const { return a; }
};
/** \internal
* \brief Template functor to compute the squared absolute value of a scalar
*
* \sa class CwiseUnaryOp, Cwise::abs2
*/
template<typename Scalar> struct scalar_abs2_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pmul(a,a); }
};
template<typename Scalar>
struct functor_traits<scalar_abs2_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
/** \internal
* \brief Template functor to compute the conjugate of a complex value
*
* \sa class CwiseUnaryOp, MatrixBase::conjugate()
*/
template<typename Scalar> struct scalar_conjugate_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
};
template<typename Scalar>
struct functor_traits<scalar_conjugate_op<Scalar> >
{
enum {
Cost = 0,
// Yes the cost is zero even for complexes because in most cases for which
// the cost is used, conjugation turns to be a no-op. Some examples:
// cost(a*conj(b)) == cost(a*b)
// cost(a+conj(b)) == cost(a+b)
// <etc.
// If we don't set it to zero, then:
// A.conjugate().lazyProduct(B.conjugate())
// will bake its operands. We definitely don't want that!
PacketAccess = packet_traits<Scalar>::HasConj
};
};
/** \internal
* \brief Template functor to compute the phase angle of a complex
*
* \sa class CwiseUnaryOp, Cwise::arg
*/
template<typename Scalar> struct scalar_arg_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_arg_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using numext::arg; return arg(a); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::parg(a); }
};
template<typename Scalar>
struct functor_traits<scalar_arg_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::IsComplex ? 5 * NumTraits<Scalar>::MulCost : NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasArg
};
};
/** \internal
* \brief Template functor to cast a scalar to another type
*
* \sa class CwiseUnaryOp, MatrixBase::cast()
*/
template<typename Scalar, typename NewType>
struct scalar_cast_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
typedef NewType result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
};
template<typename Scalar, typename NewType>
struct functor_traits<scalar_cast_op<Scalar,NewType> >
{ enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the real part of a complex
*
* \sa class CwiseUnaryOp, MatrixBase::real()
*/
template<typename Scalar>
struct scalar_real_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); }
};
template<typename Scalar>
struct functor_traits<scalar_real_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the imaginary part of a complex
*
* \sa class CwiseUnaryOp, MatrixBase::imag()
*/
template<typename Scalar>
struct scalar_imag_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); }
};
template<typename Scalar>
struct functor_traits<scalar_imag_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the real part of a complex as a reference
*
* \sa class CwiseUnaryOp, MatrixBase::real()
*/
template<typename Scalar>
struct scalar_real_ref_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct functor_traits<scalar_real_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the imaginary part of a complex as a reference
*
* \sa class CwiseUnaryOp, MatrixBase::imag()
*/
template<typename Scalar>
struct scalar_imag_ref_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct functor_traits<scalar_imag_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
*
* \brief Template functor to compute the exponential of a scalar
*
* \sa class CwiseUnaryOp, Cwise::exp()
*/
template<typename Scalar> struct scalar_exp_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::exp(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
};
template <typename Scalar>
struct functor_traits<scalar_exp_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasExp,
// The following numbers are based on the AVX implementation.
#ifdef EIGEN_VECTORIZE_FMA
// Haswell can issue 2 add/mul/madd per cycle.
Cost =
(sizeof(Scalar) == 4
// float: 8 pmadd, 4 pmul, 2 padd/psub, 6 other
? (8 * NumTraits<Scalar>::AddCost + 6 * NumTraits<Scalar>::MulCost)
// double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other
: (14 * NumTraits<Scalar>::AddCost +
6 * NumTraits<Scalar>::MulCost +
scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value))
#else
Cost =
(sizeof(Scalar) == 4
// float: 7 pmadd, 6 pmul, 4 padd/psub, 10 other
? (21 * NumTraits<Scalar>::AddCost + 13 * NumTraits<Scalar>::MulCost)
// double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other
: (23 * NumTraits<Scalar>::AddCost +
12 * NumTraits<Scalar>::MulCost +
scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value))
#endif
};
};
/** \internal
*
* \brief Template functor to compute the exponential of a scalar - 1.
*
* \sa class CwiseUnaryOp, ArrayBase::expm1()
*/
template<typename Scalar> struct scalar_expm1_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_expm1_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::expm1(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexpm1(a); }
};
template <typename Scalar>
struct functor_traits<scalar_expm1_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasExpm1,
Cost = functor_traits<scalar_exp_op<Scalar> >::Cost // TODO measure cost of expm1
};
};
/** \internal
*
* \brief Template functor to compute the logarithm of a scalar
*
* \sa class CwiseUnaryOp, ArrayBase::log()
*/
template<typename Scalar> struct scalar_log_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
};
template <typename Scalar>
struct functor_traits<scalar_log_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasLog,
Cost =
(PacketAccess
// The following numbers are based on the AVX implementation.
#ifdef EIGEN_VECTORIZE_FMA
// 8 pmadd, 6 pmul, 8 padd/psub, 16 other, can issue 2 add/mul/madd per cycle.
? (20 * NumTraits<Scalar>::AddCost + 7 * NumTraits<Scalar>::MulCost)
#else
// 8 pmadd, 6 pmul, 8 padd/psub, 20 other
? (36 * NumTraits<Scalar>::AddCost + 14 * NumTraits<Scalar>::MulCost)
#endif
// Measured cost of std::log.
: sizeof(Scalar)==4 ? 40 : 85)
};
};
/** \internal
*
* \brief Template functor to compute the logarithm of 1 plus a scalar value
*
* \sa class CwiseUnaryOp, ArrayBase::log1p()
*/
template<typename Scalar> struct scalar_log1p_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_log1p_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log1p(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog1p(a); }
};
template <typename Scalar>
struct functor_traits<scalar_log1p_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasLog1p,
Cost = functor_traits<scalar_log_op<Scalar> >::Cost // TODO measure cost of log1p
};
};
/** \internal
*
* \brief Template functor to compute the base-10 logarithm of a scalar
*
* \sa class CwiseUnaryOp, Cwise::log10()
*/
template<typename Scalar> struct scalar_log10_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_log10_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { EIGEN_USING_STD_MATH(log10) return log10(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog10(a); }
};
template<typename Scalar>
struct functor_traits<scalar_log10_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog10 }; };
/** \internal
* \brief Template functor to compute the square root of a scalar
* \sa class CwiseUnaryOp, Cwise::sqrt()
*/
template<typename Scalar> struct scalar_sqrt_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sqrt(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
};
template <typename Scalar>
struct functor_traits<scalar_sqrt_op<Scalar> > {
enum {
#if EIGEN_FAST_MATH
// The following numbers are based on the AVX implementation.
Cost = (sizeof(Scalar) == 8 ? 28
// 4 pmul, 1 pmadd, 3 other
: (3 * NumTraits<Scalar>::AddCost +
5 * NumTraits<Scalar>::MulCost)),
#else
// The following numbers are based on min VSQRT throughput on Haswell.
Cost = (sizeof(Scalar) == 8 ? 28 : 14),
#endif
PacketAccess = packet_traits<Scalar>::HasSqrt
};
};
/** \internal
* \brief Template functor to compute the reciprocal square root of a scalar
* \sa class CwiseUnaryOp, Cwise::rsqrt()
*/
template<typename Scalar> struct scalar_rsqrt_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_rsqrt_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(1)/numext::sqrt(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::prsqrt(a); }
};
template<typename Scalar>
struct functor_traits<scalar_rsqrt_op<Scalar> >
{ enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasRsqrt
};
};
/** \internal
* \brief Template functor to compute the cosine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::cos()
*/
template<typename Scalar> struct scalar_cos_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return numext::cos(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_cos_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasCos
};
};
/** \internal
* \brief Template functor to compute the sine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::sin()
*/
template<typename Scalar> struct scalar_sin_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sin(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sin_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasSin
};
};
/** \internal
* \brief Template functor to compute the tan of a scalar
* \sa class CwiseUnaryOp, ArrayBase::tan()
*/
template<typename Scalar> struct scalar_tan_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::tan(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
};
template<typename Scalar>
struct functor_traits<scalar_tan_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasTan
};
};
/** \internal
* \brief Template functor to compute the arc cosine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::acos()
*/
template<typename Scalar> struct scalar_acos_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::acos(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_acos_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasACos
};
};
/** \internal
* \brief Template functor to compute the arc sine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::asin()
*/
template<typename Scalar> struct scalar_asin_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::asin(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
};
template<typename Scalar>
struct functor_traits<scalar_asin_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasASin
};
};
/** \internal
* \brief Template functor to compute the atan of a scalar
* \sa class CwiseUnaryOp, ArrayBase::atan()
*/
template<typename Scalar> struct scalar_atan_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_atan_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::atan(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::patan(a); }
};
template<typename Scalar>
struct functor_traits<scalar_atan_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasATan
};
};
/** \internal
* \brief Template functor to compute the tanh of a scalar
* \sa class CwiseUnaryOp, ArrayBase::tanh()
*/
template <typename Scalar>
struct scalar_tanh_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_tanh_op)
EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::tanh(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x) const { return ptanh(x); }
};
template <typename Scalar>
struct functor_traits<scalar_tanh_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasTanh,
Cost = ( (EIGEN_FAST_MATH && is_same<Scalar,float>::value)
// The following numbers are based on the AVX implementation,
#ifdef EIGEN_VECTORIZE_FMA
// Haswell can issue 2 add/mul/madd per cycle.
// 9 pmadd, 2 pmul, 1 div, 2 other
? (2 * NumTraits<Scalar>::AddCost +
6 * NumTraits<Scalar>::MulCost +
scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value)
#else
? (11 * NumTraits<Scalar>::AddCost +
11 * NumTraits<Scalar>::MulCost +
scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value)
#endif
// This number assumes a naive implementation of tanh
: (6 * NumTraits<Scalar>::AddCost +
3 * NumTraits<Scalar>::MulCost +
2 * scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value +
functor_traits<scalar_exp_op<Scalar> >::Cost))
};
};
#if EIGEN_HAS_CXX11_MATH
/** \internal
* \brief Template functor to compute the atanh of a scalar
* \sa class CwiseUnaryOp, ArrayBase::atanh()
*/
template <typename Scalar>
struct scalar_atanh_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_atanh_op)
EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::atanh(a); }
};
template <typename Scalar>
struct functor_traits<scalar_atanh_op<Scalar> > {
enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
};
#endif
/** \internal
* \brief Template functor to compute the sinh of a scalar
* \sa class CwiseUnaryOp, ArrayBase::sinh()
*/
template<typename Scalar> struct scalar_sinh_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sinh_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sinh(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psinh(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sinh_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasSinh
};
};
#if EIGEN_HAS_CXX11_MATH
/** \internal
* \brief Template functor to compute the asinh of a scalar
* \sa class CwiseUnaryOp, ArrayBase::asinh()
*/
template <typename Scalar>
struct scalar_asinh_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_asinh_op)
EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::asinh(a); }
};
template <typename Scalar>
struct functor_traits<scalar_asinh_op<Scalar> > {
enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
};
#endif
/** \internal
* \brief Template functor to compute the cosh of a scalar
* \sa class CwiseUnaryOp, ArrayBase::cosh()
*/
template<typename Scalar> struct scalar_cosh_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cosh_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::cosh(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcosh(a); }
};
template<typename Scalar>
struct functor_traits<scalar_cosh_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasCosh
};
};
#if EIGEN_HAS_CXX11_MATH
/** \internal
* \brief Template functor to compute the acosh of a scalar
* \sa class CwiseUnaryOp, ArrayBase::acosh()
*/
template <typename Scalar>
struct scalar_acosh_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_acosh_op)
EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::acosh(a); }
};
template <typename Scalar>
struct functor_traits<scalar_acosh_op<Scalar> > {
enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
};
#endif
/** \internal
* \brief Template functor to compute the inverse of a scalar
* \sa class CwiseUnaryOp, Cwise::inverse()
*/
template<typename Scalar>
struct scalar_inverse_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
template<typename Packet>
EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
{ return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
};
template <typename Scalar>
struct functor_traits<scalar_inverse_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasDiv,
Cost = scalar_div_cost<Scalar, PacketAccess>::value
};
};
/** \internal
* \brief Template functor to compute the square of a scalar
* \sa class CwiseUnaryOp, Cwise::square()
*/
template<typename Scalar>
struct scalar_square_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a; }
template<typename Packet>
EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
{ return internal::pmul(a,a); }
};
template<typename Scalar>
struct functor_traits<scalar_square_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
/** \internal
* \brief Template functor to compute the cube of a scalar
* \sa class CwiseUnaryOp, Cwise::cube()
*/
template<typename Scalar>
struct scalar_cube_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a*a; }
template<typename Packet>
EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
{ return internal::pmul(a,pmul(a,a)); }
};
template<typename Scalar>
struct functor_traits<scalar_cube_op<Scalar> >
{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
/** \internal
* \brief Template functor to compute the rounded value of a scalar
* \sa class CwiseUnaryOp, ArrayBase::round()
*/
template<typename Scalar> struct scalar_round_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_round_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::round(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pround(a); }
};
template<typename Scalar>
struct functor_traits<scalar_round_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasRound
};
};
/** \internal
* \brief Template functor to compute the floor of a scalar
* \sa class CwiseUnaryOp, ArrayBase::floor()
*/
template<typename Scalar> struct scalar_floor_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_floor_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::floor(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pfloor(a); }
};
template<typename Scalar>
struct functor_traits<scalar_floor_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasFloor
};
};
/** \internal
* \brief Template functor to compute the ceil of a scalar
* \sa class CwiseUnaryOp, ArrayBase::ceil()
*/
template<typename Scalar> struct scalar_ceil_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_ceil_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::ceil(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pceil(a); }
};
template<typename Scalar>
struct functor_traits<scalar_ceil_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasCeil
};
};
/** \internal
* \brief Template functor to compute whether a scalar is NaN
* \sa class CwiseUnaryOp, ArrayBase::isnan()
*/
template<typename Scalar> struct scalar_isnan_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_isnan_op)
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const {
#if defined(SYCL_DEVICE_ONLY)
return numext::isnan(a);
#else
return (numext::isnan)(a);
#endif
}
};
template<typename Scalar>
struct functor_traits<scalar_isnan_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to check whether a scalar is +/-inf
* \sa class CwiseUnaryOp, ArrayBase::isinf()
*/
template<typename Scalar> struct scalar_isinf_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_isinf_op)
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const {
#if defined(SYCL_DEVICE_ONLY)
return numext::isinf(a);
#else
return (numext::isinf)(a);
#endif
}
};
template<typename Scalar>
struct functor_traits<scalar_isinf_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to check whether a scalar has a finite value
* \sa class CwiseUnaryOp, ArrayBase::isfinite()
*/
template<typename Scalar> struct scalar_isfinite_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_isfinite_op)
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const {
#if defined(SYCL_DEVICE_ONLY)
return numext::isfinite(a);
#else
return (numext::isfinite)(a);
#endif
}
};
template<typename Scalar>
struct functor_traits<scalar_isfinite_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to compute the logical not of a boolean
*
* \sa class CwiseUnaryOp, ArrayBase::operator!
*/
template<typename Scalar> struct scalar_boolean_not_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_not_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a) const { return !a; }
};
template<typename Scalar>
struct functor_traits<scalar_boolean_not_op<Scalar> > {
enum {
Cost = NumTraits<bool>::AddCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to compute the signum of a scalar
* \sa class CwiseUnaryOp, Cwise::sign()
*/
template<typename Scalar,bool iscpx=(NumTraits<Scalar>::IsComplex!=0) > struct scalar_sign_op;
template<typename Scalar>
struct scalar_sign_op<Scalar,false> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
{
return Scalar( (a>Scalar(0)) - (a<Scalar(0)) );
}
//TODO
//template <typename Packet>
//EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); }
};
template<typename Scalar>
struct scalar_sign_op<Scalar,true> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
{
typedef typename NumTraits<Scalar>::Real real_type;
real_type aa = numext::abs(a);
if (aa==real_type(0))
return Scalar(0);
aa = real_type(1)/aa;
return Scalar(real(a)*aa, imag(a)*aa );
}
//TODO
//template <typename Packet>
//EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sign_op<Scalar> >
{ enum {
Cost =
NumTraits<Scalar>::IsComplex
? ( 8*NumTraits<Scalar>::MulCost ) // roughly
: ( 3*NumTraits<Scalar>::AddCost),
PacketAccess = packet_traits<Scalar>::HasSign
};
};
/** \internal
* \brief Template functor to compute the logistic function of a scalar
* \sa class CwiseUnaryOp, ArrayBase::logistic()
*/
template <typename T>
struct scalar_logistic_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_logistic_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const {
const T one = T(1);
return one / (one + numext::exp(-x));
}
template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Packet packetOp(const Packet& x) const {
const Packet one = pset1<Packet>(T(1));
return pdiv(one, padd(one, pexp(pnegate(x))));
}
};
/** \internal
* \brief Template specialization of the logistic function for float.
*
* Uses just a 9/10-degree rational interpolant which
* interpolates 1/(1+exp(-x)) - 0.5 up to a couple of ulp in the range
* [-18, 18], outside of which the fl(logistic(x)) = {0|1}. The shifted
* logistic is interpolated because it was easier to make the fit converge.
*
*/
template <>
struct scalar_logistic_op<float> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_logistic_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float operator()(const float& x) const {
if (x < -18.0f) return 0.0f;
else if (x > 18.0f) return 1.0f;
else return 1.0f / (1.0f + numext::exp(-x));
}
template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Packet packetOp(const Packet& _x) const {
// Clamp the inputs to the range [-18, 18] since anything outside
// this range is 0.0f or 1.0f in single-precision.
const Packet x = pmax(pmin(_x, pset1<Packet>(18.0)), pset1<Packet>(-18.0));
// The monomial coefficients of the numerator polynomial (odd).
const Packet alpha_1 = pset1<Packet>(2.48287947061529e-01);
const Packet alpha_3 = pset1<Packet>(8.51377133304701e-03);
const Packet alpha_5 = pset1<Packet>(6.08574864600143e-05);
const Packet alpha_7 = pset1<Packet>(1.15627324459942e-07);
const Packet alpha_9 = pset1<Packet>(4.37031012579801e-11);
// The monomial coefficients of the denominator polynomial (even).
const Packet beta_0 = pset1<Packet>(9.93151921023180e-01);
const Packet beta_2 = pset1<Packet>(1.16817656904453e-01);
const Packet beta_4 = pset1<Packet>(1.70198817374094e-03);
const Packet beta_6 = pset1<Packet>(6.29106785017040e-06);
const Packet beta_8 = pset1<Packet>(5.76102136993427e-09);
const Packet beta_10 = pset1<Packet>(6.10247389755681e-13);
// Since the polynomials are odd/even, we need x^2.
const Packet x2 = pmul(x, x);
// Evaluate the numerator polynomial p.
Packet p = pmadd(x2, alpha_9, alpha_7);
p = pmadd(x2, p, alpha_5);
p = pmadd(x2, p, alpha_3);
p = pmadd(x2, p, alpha_1);
p = pmul(x, p);
// Evaluate the denominator polynomial p.
Packet q = pmadd(x2, beta_10, beta_8);
q = pmadd(x2, q, beta_6);
q = pmadd(x2, q, beta_4);
q = pmadd(x2, q, beta_2);
q = pmadd(x2, q, beta_0);
// Divide the numerator by the denominator and shift it up.
return pmax(pmin(padd(pdiv(p, q), pset1<Packet>(0.5)), pset1<Packet>(1.0)),
pset1<Packet>(0.0));
}
};
template <typename T>
struct functor_traits<scalar_logistic_op<T> > {
enum {
Cost = scalar_div_cost<T, packet_traits<T>::HasDiv>::value +
(internal::is_same<T, float>::value
? NumTraits<T>::AddCost * 12 + NumTraits<T>::MulCost * 11
: NumTraits<T>::AddCost * 2 +
functor_traits<scalar_exp_op<T> >::Cost),
PacketAccess =
packet_traits<T>::HasAdd && packet_traits<T>::HasDiv &&
(internal::is_same<T, float>::value
? packet_traits<T>::HasMul && packet_traits<T>::HasMax &&
packet_traits<T>::HasMin
: packet_traits<T>::HasNegate && packet_traits<T>::HasExp)
};
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_FUNCTORS_H