blob: 5ed7c437bad6265cffeadb78e258750e5e173e47 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_BLOCK_H
#define EIGEN_SPARSE_BLOCK_H
namespace Eigen {
// Subset of columns or rows
template<typename XprType, int BlockRows, int BlockCols>
class BlockImpl<XprType,BlockRows,BlockCols,true,Sparse>
: public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,true> >
{
typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
typedef Block<XprType, BlockRows, BlockCols, true> BlockType;
public:
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
protected:
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
typedef SparseMatrixBase<BlockType> Base;
using Base::convert_index;
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
inline BlockImpl(XprType& xpr, Index i)
: m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize)
{}
inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols))
{}
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
Index nonZeros() const
{
typedef internal::evaluator<XprType> EvaluatorType;
EvaluatorType matEval(m_matrix);
Index nnz = 0;
Index end = m_outerStart + m_outerSize.value();
for(Index j=m_outerStart; j<end; ++j)
for(typename EvaluatorType::InnerIterator it(matEval, j); it; ++it)
++nnz;
return nnz;
}
inline const Scalar coeff(Index row, Index col) const
{
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
}
inline const Scalar coeff(Index index) const
{
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
}
inline const XprType& nestedExpression() const { return m_matrix; }
inline XprType& nestedExpression() { return m_matrix; }
Index startRow() const { return IsRowMajor ? m_outerStart : 0; }
Index startCol() const { return IsRowMajor ? 0 : m_outerStart; }
Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
protected:
typename internal::ref_selector<XprType>::non_const_type m_matrix;
Index m_outerStart;
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
protected:
// Disable assignment with clear error message.
// Note that simply removing operator= yields compilation errors with ICC+MSVC
template<typename T>
BlockImpl& operator=(const T&)
{
EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY);
return *this;
}
};
/***************************************************************************
* specialization for SparseMatrix
***************************************************************************/
namespace internal {
template<typename SparseMatrixType, int BlockRows, int BlockCols>
class sparse_matrix_block_impl
: public SparseCompressedBase<Block<SparseMatrixType,BlockRows,BlockCols,true> >
{
typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _MatrixTypeNested;
typedef Block<SparseMatrixType, BlockRows, BlockCols, true> BlockType;
typedef SparseCompressedBase<Block<SparseMatrixType,BlockRows,BlockCols,true> > Base;
using Base::convert_index;
public:
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
protected:
typedef typename Base::IndexVector IndexVector;
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
public:
inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index i)
: m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize)
{}
inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols))
{}
template<typename OtherDerived>
inline BlockType& operator=(const SparseMatrixBase<OtherDerived>& other)
{
typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _NestedMatrixType;
_NestedMatrixType& matrix = m_matrix;
// This assignment is slow if this vector set is not empty
// and/or it is not at the end of the nonzeros of the underlying matrix.
// 1 - eval to a temporary to avoid transposition and/or aliasing issues
Ref<const SparseMatrix<Scalar, IsRowMajor ? RowMajor : ColMajor, StorageIndex> > tmp(other.derived());
eigen_internal_assert(tmp.outerSize()==m_outerSize.value());
// 2 - let's check whether there is enough allocated memory
Index nnz = tmp.nonZeros();
Index start = m_outerStart==0 ? 0 : m_matrix.outerIndexPtr()[m_outerStart]; // starting position of the current block
Index end = m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]; // ending position of the current block
Index block_size = end - start; // available room in the current block
Index tail_size = m_matrix.outerIndexPtr()[m_matrix.outerSize()] - end;
Index free_size = m_matrix.isCompressed()
? Index(matrix.data().allocatedSize()) + block_size
: block_size;
Index tmp_start = tmp.outerIndexPtr()[0];
bool update_trailing_pointers = false;
if(nnz>free_size)
{
// realloc manually to reduce copies
typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz);
internal::smart_copy(m_matrix.valuePtr(), m_matrix.valuePtr() + start, newdata.valuePtr());
internal::smart_copy(m_matrix.innerIndexPtr(), m_matrix.innerIndexPtr() + start, newdata.indexPtr());
internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, newdata.valuePtr() + start);
internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, newdata.indexPtr() + start);
internal::smart_copy(matrix.valuePtr()+end, matrix.valuePtr()+end + tail_size, newdata.valuePtr()+start+nnz);
internal::smart_copy(matrix.innerIndexPtr()+end, matrix.innerIndexPtr()+end + tail_size, newdata.indexPtr()+start+nnz);
newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz);
matrix.data().swap(newdata);
update_trailing_pointers = true;
}
else
{
if(m_matrix.isCompressed())
{
// no need to realloc, simply copy the tail at its respective position and insert tmp
matrix.data().resize(start + nnz + tail_size);
internal::smart_memmove(matrix.valuePtr()+end, matrix.valuePtr() + end+tail_size, matrix.valuePtr() + start+nnz);
internal::smart_memmove(matrix.innerIndexPtr()+end, matrix.innerIndexPtr() + end+tail_size, matrix.innerIndexPtr() + start+nnz);
update_trailing_pointers = true;
}
internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, matrix.valuePtr() + start);
internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, matrix.innerIndexPtr() + start);
}
// update outer index pointers and innerNonZeros
if(IsVectorAtCompileTime)
{
if(!m_matrix.isCompressed())
matrix.innerNonZeroPtr()[m_outerStart] = StorageIndex(nnz);
matrix.outerIndexPtr()[m_outerStart] = StorageIndex(start);
}
else
{
StorageIndex p = StorageIndex(start);
for(Index k=0; k<m_outerSize.value(); ++k)
{
StorageIndex nnz_k = internal::convert_index<StorageIndex>(tmp.innerVector(k).nonZeros());
if(!m_matrix.isCompressed())
matrix.innerNonZeroPtr()[m_outerStart+k] = nnz_k;
matrix.outerIndexPtr()[m_outerStart+k] = p;
p += nnz_k;
}
}
if(update_trailing_pointers)
{
StorageIndex offset = internal::convert_index<StorageIndex>(nnz - block_size);
for(Index k = m_outerStart + m_outerSize.value(); k<=matrix.outerSize(); ++k)
{
matrix.outerIndexPtr()[k] += offset;
}
}
return derived();
}
inline BlockType& operator=(const BlockType& other)
{
return operator=<BlockType>(other);
}
inline const Scalar* valuePtr() const
{ return m_matrix.valuePtr(); }
inline Scalar* valuePtr()
{ return m_matrix.valuePtr(); }
inline const StorageIndex* innerIndexPtr() const
{ return m_matrix.innerIndexPtr(); }
inline StorageIndex* innerIndexPtr()
{ return m_matrix.innerIndexPtr(); }
inline const StorageIndex* outerIndexPtr() const
{ return m_matrix.outerIndexPtr() + m_outerStart; }
inline StorageIndex* outerIndexPtr()
{ return m_matrix.outerIndexPtr() + m_outerStart; }
inline const StorageIndex* innerNonZeroPtr() const
{ return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); }
inline StorageIndex* innerNonZeroPtr()
{ return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); }
bool isCompressed() const { return m_matrix.innerNonZeroPtr()==0; }
inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.coeffRef(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
}
inline const Scalar coeff(Index row, Index col) const
{
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
}
inline const Scalar coeff(Index index) const
{
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
}
const Scalar& lastCoeff() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(sparse_matrix_block_impl);
eigen_assert(Base::nonZeros()>0);
if(m_matrix.isCompressed())
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart+1]-1];
else
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart]+m_matrix.innerNonZeroPtr()[m_outerStart]-1];
}
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
inline const SparseMatrixType& nestedExpression() const { return m_matrix; }
inline SparseMatrixType& nestedExpression() { return m_matrix; }
Index startRow() const { return IsRowMajor ? m_outerStart : 0; }
Index startCol() const { return IsRowMajor ? 0 : m_outerStart; }
Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
protected:
typename internal::ref_selector<SparseMatrixType>::non_const_type m_matrix;
Index m_outerStart;
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
};
} // namespace internal
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
class BlockImpl<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true,Sparse>
: public internal::sparse_matrix_block_impl<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols>
{
public:
typedef _StorageIndex StorageIndex;
typedef SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType;
typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
inline BlockImpl(SparseMatrixType& xpr, Index i)
: Base(xpr, i)
{}
inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Base(xpr, startRow, startCol, blockRows, blockCols)
{}
using Base::operator=;
};
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
class BlockImpl<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true,Sparse>
: public internal::sparse_matrix_block_impl<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols>
{
public:
typedef _StorageIndex StorageIndex;
typedef const SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType;
typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
inline BlockImpl(SparseMatrixType& xpr, Index i)
: Base(xpr, i)
{}
inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Base(xpr, startRow, startCol, blockRows, blockCols)
{}
using Base::operator=;
private:
template<typename Derived> BlockImpl(const SparseMatrixBase<Derived>& xpr, Index i);
template<typename Derived> BlockImpl(const SparseMatrixBase<Derived>& xpr);
};
//----------
/** Generic implementation of sparse Block expression.
* Real-only.
*/
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class BlockImpl<XprType,BlockRows,BlockCols,InnerPanel,Sparse>
: public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,InnerPanel> >, internal::no_assignment_operator
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
typedef SparseMatrixBase<BlockType> Base;
using Base::convert_index;
public:
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
/** Column or Row constructor
*/
inline BlockImpl(XprType& xpr, Index i)
: m_matrix(xpr),
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? convert_index(i) : 0),
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? convert_index(i) : 0),
m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
m_blockCols(BlockCols==1 ? 1 : xpr.cols())
{}
/** Dynamic-size constructor
*/
inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr), m_startRow(convert_index(startRow)), m_startCol(convert_index(startCol)), m_blockRows(convert_index(blockRows)), m_blockCols(convert_index(blockCols))
{}
inline Index rows() const { return m_blockRows.value(); }
inline Index cols() const { return m_blockCols.value(); }
inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.coeffRef(row + m_startRow.value(), col + m_startCol.value());
}
inline const Scalar coeff(Index row, Index col) const
{
return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value());
}
inline Scalar& coeffRef(Index index)
{
return m_matrix.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const Scalar coeff(Index index) const
{
return m_matrix.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const XprType& nestedExpression() const { return m_matrix; }
inline XprType& nestedExpression() { return m_matrix; }
Index startRow() const { return m_startRow.value(); }
Index startCol() const { return m_startCol.value(); }
Index blockRows() const { return m_blockRows.value(); }
Index blockCols() const { return m_blockCols.value(); }
protected:
// friend class internal::GenericSparseBlockInnerIteratorImpl<XprType,BlockRows,BlockCols,InnerPanel>;
friend struct internal::unary_evaluator<Block<XprType,BlockRows,BlockCols,InnerPanel>, internal::IteratorBased, Scalar >;
Index nonZeros() const { return Dynamic; }
typename internal::ref_selector<XprType>::non_const_type m_matrix;
const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
protected:
// Disable assignment with clear error message.
// Note that simply removing operator= yields compilation errors with ICC+MSVC
template<typename T>
BlockImpl& operator=(const T&)
{
EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY);
return *this;
}
};
namespace internal {
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased >
: public evaluator_base<Block<ArgType,BlockRows,BlockCols,InnerPanel> >
{
class InnerVectorInnerIterator;
class OuterVectorInnerIterator;
public:
typedef Block<ArgType,BlockRows,BlockCols,InnerPanel> XprType;
typedef typename XprType::StorageIndex StorageIndex;
typedef typename XprType::Scalar Scalar;
enum {
IsRowMajor = XprType::IsRowMajor,
OuterVector = (BlockCols==1 && ArgType::IsRowMajor)
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
// revert to || as soon as not needed anymore.
(BlockRows==1 && !ArgType::IsRowMajor),
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
Flags = XprType::Flags
};
typedef typename internal::conditional<OuterVector,OuterVectorInnerIterator,InnerVectorInnerIterator>::type InnerIterator;
explicit unary_evaluator(const XprType& op)
: m_argImpl(op.nestedExpression()), m_block(op)
{}
inline Index nonZerosEstimate() const {
Index nnz = m_block.nonZeros();
if(nnz<0)
return m_argImpl.nonZerosEstimate() * m_block.size() / m_block.nestedExpression().size();
return nnz;
}
protected:
typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
evaluator<ArgType> m_argImpl;
const XprType &m_block;
};
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
class unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased>::InnerVectorInnerIterator
: public EvalIterator
{
enum { IsRowMajor = unary_evaluator::IsRowMajor };
const XprType& m_block;
Index m_end;
public:
EIGEN_STRONG_INLINE InnerVectorInnerIterator(const unary_evaluator& aEval, Index outer)
: EvalIterator(aEval.m_argImpl, outer + (IsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol())),
m_block(aEval.m_block),
m_end(IsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows())
{
while( (EvalIterator::operator bool()) && (EvalIterator::index() < (IsRowMajor ? m_block.startCol() : m_block.startRow())) )
EvalIterator::operator++();
}
inline StorageIndex index() const { return EvalIterator::index() - convert_index<StorageIndex>(IsRowMajor ? m_block.startCol() : m_block.startRow()); }
inline Index outer() const { return EvalIterator::outer() - (IsRowMajor ? m_block.startRow() : m_block.startCol()); }
inline Index row() const { return EvalIterator::row() - m_block.startRow(); }
inline Index col() const { return EvalIterator::col() - m_block.startCol(); }
inline operator bool() const { return EvalIterator::operator bool() && EvalIterator::index() < m_end; }
};
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
class unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased>::OuterVectorInnerIterator
{
enum { IsRowMajor = unary_evaluator::IsRowMajor };
const unary_evaluator& m_eval;
Index m_outerPos;
const Index m_innerIndex;
Index m_end;
EvalIterator m_it;
public:
EIGEN_STRONG_INLINE OuterVectorInnerIterator(const unary_evaluator& aEval, Index outer)
: m_eval(aEval),
m_outerPos( (IsRowMajor ? aEval.m_block.startCol() : aEval.m_block.startRow()) ),
m_innerIndex(IsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol()),
m_end(IsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows()),
m_it(m_eval.m_argImpl, m_outerPos)
{
EIGEN_UNUSED_VARIABLE(outer);
eigen_assert(outer==0);
while(m_it && m_it.index() < m_innerIndex) ++m_it;
if((!m_it) || (m_it.index()!=m_innerIndex))
++(*this);
}
inline StorageIndex index() const { return convert_index<StorageIndex>(m_outerPos - (IsRowMajor ? m_eval.m_block.startCol() : m_eval.m_block.startRow())); }
inline Index outer() const { return 0; }
inline Index row() const { return IsRowMajor ? 0 : index(); }
inline Index col() const { return IsRowMajor ? index() : 0; }
inline Scalar value() const { return m_it.value(); }
inline Scalar& valueRef() { return m_it.valueRef(); }
inline OuterVectorInnerIterator& operator++()
{
// search next non-zero entry
while(++m_outerPos<m_end)
{
// Restart iterator at the next inner-vector:
m_it.~EvalIterator();
::new (&m_it) EvalIterator(m_eval.m_argImpl, m_outerPos);
// search for the key m_innerIndex in the current outer-vector
while(m_it && m_it.index() < m_innerIndex) ++m_it;
if(m_it && m_it.index()==m_innerIndex) break;
}
return *this;
}
inline operator bool() const { return m_outerPos < m_end; }
};
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
struct unary_evaluator<Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true>, IteratorBased>
: evaluator<SparseCompressedBase<Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> > >
{
typedef Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> XprType;
typedef evaluator<SparseCompressedBase<XprType> > Base;
explicit unary_evaluator(const XprType &xpr) : Base(xpr) {}
};
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
struct unary_evaluator<Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true>, IteratorBased>
: evaluator<SparseCompressedBase<Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> > >
{
typedef Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> XprType;
typedef evaluator<SparseCompressedBase<XprType> > Base;
explicit unary_evaluator(const XprType &xpr) : Base(xpr) {}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSE_BLOCK_H