blob: f005a18a18e2b35e57fb56349f191edf8825f3da [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSEDENSEPRODUCT_H
#define EIGEN_SPARSEDENSEPRODUCT_H
namespace Eigen {
namespace internal {
template <> struct product_promote_storage_type<Sparse,Dense, OuterProduct> { typedef Sparse ret; };
template <> struct product_promote_storage_type<Dense,Sparse, OuterProduct> { typedef Sparse ret; };
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType,
typename AlphaType,
int LhsStorageOrder = ((SparseLhsType::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor,
bool ColPerCol = ((DenseRhsType::Flags&RowMajorBit)==0) || DenseRhsType::ColsAtCompileTime==1>
struct sparse_time_dense_product_impl;
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, RowMajor, true>
{
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
typedef typename internal::remove_all<DenseResType>::type Res;
typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
typedef evaluator<Lhs> LhsEval;
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
{
LhsEval lhsEval(lhs);
Index n = lhs.outerSize();
#ifdef EIGEN_HAS_OPENMP
Eigen::initParallel();
Index threads = Eigen::nbThreads();
#endif
for(Index c=0; c<rhs.cols(); ++c)
{
#ifdef EIGEN_HAS_OPENMP
// This 20000 threshold has been found experimentally on 2D and 3D Poisson problems.
// It basically represents the minimal amount of work to be done to be worth it.
if(threads>1 && lhsEval.nonZerosEstimate() > 20000)
{
#pragma omp parallel for schedule(dynamic,(n+threads*4-1)/(threads*4)) num_threads(threads)
for(Index i=0; i<n; ++i)
processRow(lhsEval,rhs,res,alpha,i,c);
}
else
#endif
{
for(Index i=0; i<n; ++i)
processRow(lhsEval,rhs,res,alpha,i,c);
}
}
}
static void processRow(const LhsEval& lhsEval, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha, Index i, Index col)
{
typename Res::Scalar tmp(0);
for(LhsInnerIterator it(lhsEval,i); it ;++it)
tmp += it.value() * rhs.coeff(it.index(),col);
res.coeffRef(i,col) += alpha * tmp;
}
};
// FIXME: what is the purpose of the following specialization? Is it for the BlockedSparse format?
// -> let's disable it for now as it is conflicting with generic scalar*matrix and matrix*scalar operators
// template<typename T1, typename T2/*, int _Options, typename _StrideType*/>
// struct ScalarBinaryOpTraits<T1, Ref<T2/*, _Options, _StrideType*/> >
// {
// enum {
// Defined = 1
// };
// typedef typename CwiseUnaryOp<scalar_multiple2_op<T1, typename T2::Scalar>, T2>::PlainObject ReturnType;
// };
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, AlphaType, ColMajor, true>
{
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
typedef typename internal::remove_all<DenseResType>::type Res;
typedef evaluator<Lhs> LhsEval;
typedef typename LhsEval::InnerIterator LhsInnerIterator;
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
{
LhsEval lhsEval(lhs);
for(Index c=0; c<rhs.cols(); ++c)
{
for(Index j=0; j<lhs.outerSize(); ++j)
{
// typename Res::Scalar rhs_j = alpha * rhs.coeff(j,c);
typename ScalarBinaryOpTraits<AlphaType, typename Rhs::Scalar>::ReturnType rhs_j(alpha * rhs.coeff(j,c));
for(LhsInnerIterator it(lhsEval,j); it ;++it)
res.coeffRef(it.index(),c) += it.value() * rhs_j;
}
}
}
};
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, RowMajor, false>
{
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
typedef typename internal::remove_all<DenseResType>::type Res;
typedef evaluator<Lhs> LhsEval;
typedef typename LhsEval::InnerIterator LhsInnerIterator;
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
{
Index n = lhs.rows();
LhsEval lhsEval(lhs);
#ifdef EIGEN_HAS_OPENMP
Eigen::initParallel();
Index threads = Eigen::nbThreads();
// This 20000 threshold has been found experimentally on 2D and 3D Poisson problems.
// It basically represents the minimal amount of work to be done to be worth it.
if(threads>1 && lhsEval.nonZerosEstimate()*rhs.cols() > 20000)
{
#pragma omp parallel for schedule(dynamic,(n+threads*4-1)/(threads*4)) num_threads(threads)
for(Index i=0; i<n; ++i)
processRow(lhsEval,rhs,res,alpha,i);
}
else
#endif
{
for(Index i=0; i<n; ++i)
processRow(lhsEval, rhs, res, alpha, i);
}
}
static void processRow(const LhsEval& lhsEval, const DenseRhsType& rhs, Res& res, const typename Res::Scalar& alpha, Index i)
{
typename Res::RowXpr res_i(res.row(i));
for(LhsInnerIterator it(lhsEval,i); it ;++it)
res_i += (alpha*it.value()) * rhs.row(it.index());
}
};
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, ColMajor, false>
{
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
typedef typename internal::remove_all<DenseResType>::type Res;
typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
{
evaluator<Lhs> lhsEval(lhs);
for(Index j=0; j<lhs.outerSize(); ++j)
{
typename Rhs::ConstRowXpr rhs_j(rhs.row(j));
for(LhsInnerIterator it(lhsEval,j); it ;++it)
res.row(it.index()) += (alpha*it.value()) * rhs_j;
}
}
};
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType,typename AlphaType>
inline void sparse_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
{
sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, AlphaType>::run(lhs, rhs, res, alpha);
}
} // end namespace internal
namespace internal {
template<typename Lhs, typename Rhs, int ProductType>
struct generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SparseShape,DenseShape,ProductType> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
typedef typename nested_eval<Lhs,((Rhs::Flags&RowMajorBit)==0) ? 1 : Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename nested_eval<Rhs,((Lhs::Flags&RowMajorBit)==0) ? 1 : Dynamic>::type RhsNested;
LhsNested lhsNested(lhs);
RhsNested rhsNested(rhs);
internal::sparse_time_dense_product(lhsNested, rhsNested, dst, alpha);
}
};
template<typename Lhs, typename Rhs, int ProductType>
struct generic_product_impl<Lhs, Rhs, SparseTriangularShape, DenseShape, ProductType>
: generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType>
{};
template<typename Lhs, typename Rhs, int ProductType>
struct generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SparseShape,ProductType> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dst>
static void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
typedef typename nested_eval<Lhs,((Rhs::Flags&RowMajorBit)==0) ? Dynamic : 1>::type LhsNested;
typedef typename nested_eval<Rhs,((Lhs::Flags&RowMajorBit)==RowMajorBit) ? 1 : Lhs::RowsAtCompileTime>::type RhsNested;
LhsNested lhsNested(lhs);
RhsNested rhsNested(rhs);
// transpose everything
Transpose<Dst> dstT(dst);
internal::sparse_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
}
};
template<typename Lhs, typename Rhs, int ProductType>
struct generic_product_impl<Lhs, Rhs, DenseShape, SparseTriangularShape, ProductType>
: generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType>
{};
template<typename LhsT, typename RhsT, bool NeedToTranspose>
struct sparse_dense_outer_product_evaluator
{
protected:
typedef typename conditional<NeedToTranspose,RhsT,LhsT>::type Lhs1;
typedef typename conditional<NeedToTranspose,LhsT,RhsT>::type ActualRhs;
typedef Product<LhsT,RhsT,DefaultProduct> ProdXprType;
// if the actual left-hand side is a dense vector,
// then build a sparse-view so that we can seamlessly iterate over it.
typedef typename conditional<is_same<typename internal::traits<Lhs1>::StorageKind,Sparse>::value,
Lhs1, SparseView<Lhs1> >::type ActualLhs;
typedef typename conditional<is_same<typename internal::traits<Lhs1>::StorageKind,Sparse>::value,
Lhs1 const&, SparseView<Lhs1> >::type LhsArg;
typedef evaluator<ActualLhs> LhsEval;
typedef evaluator<ActualRhs> RhsEval;
typedef typename evaluator<ActualLhs>::InnerIterator LhsIterator;
typedef typename ProdXprType::Scalar Scalar;
public:
enum {
Flags = NeedToTranspose ? RowMajorBit : 0,
CoeffReadCost = HugeCost
};
class InnerIterator : public LhsIterator
{
public:
InnerIterator(const sparse_dense_outer_product_evaluator &xprEval, Index outer)
: LhsIterator(xprEval.m_lhsXprImpl, 0),
m_outer(outer),
m_empty(false),
m_factor(get(xprEval.m_rhsXprImpl, outer, typename internal::traits<ActualRhs>::StorageKind() ))
{}
EIGEN_STRONG_INLINE Index outer() const { return m_outer; }
EIGEN_STRONG_INLINE Index row() const { return NeedToTranspose ? m_outer : LhsIterator::index(); }
EIGEN_STRONG_INLINE Index col() const { return NeedToTranspose ? LhsIterator::index() : m_outer; }
EIGEN_STRONG_INLINE Scalar value() const { return LhsIterator::value() * m_factor; }
EIGEN_STRONG_INLINE operator bool() const { return LhsIterator::operator bool() && (!m_empty); }
protected:
Scalar get(const RhsEval &rhs, Index outer, Dense = Dense()) const
{
return rhs.coeff(outer);
}
Scalar get(const RhsEval &rhs, Index outer, Sparse = Sparse())
{
typename RhsEval::InnerIterator it(rhs, outer);
if (it && it.index()==0 && it.value()!=Scalar(0))
return it.value();
m_empty = true;
return Scalar(0);
}
Index m_outer;
bool m_empty;
Scalar m_factor;
};
sparse_dense_outer_product_evaluator(const Lhs1 &lhs, const ActualRhs &rhs)
: m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
// transpose case
sparse_dense_outer_product_evaluator(const ActualRhs &rhs, const Lhs1 &lhs)
: m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
protected:
const LhsArg m_lhs;
evaluator<ActualLhs> m_lhsXprImpl;
evaluator<ActualRhs> m_rhsXprImpl;
};
// sparse * dense outer product
template<typename Lhs, typename Rhs>
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, SparseShape, DenseShape>
: sparse_dense_outer_product_evaluator<Lhs,Rhs, Lhs::IsRowMajor>
{
typedef sparse_dense_outer_product_evaluator<Lhs,Rhs, Lhs::IsRowMajor> Base;
typedef Product<Lhs, Rhs> XprType;
typedef typename XprType::PlainObject PlainObject;
explicit product_evaluator(const XprType& xpr)
: Base(xpr.lhs(), xpr.rhs())
{}
};
template<typename Lhs, typename Rhs>
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, DenseShape, SparseShape>
: sparse_dense_outer_product_evaluator<Lhs,Rhs, Rhs::IsRowMajor>
{
typedef sparse_dense_outer_product_evaluator<Lhs,Rhs, Rhs::IsRowMajor> Base;
typedef Product<Lhs, Rhs> XprType;
typedef typename XprType::PlainObject PlainObject;
explicit product_evaluator(const XprType& xpr)
: Base(xpr.lhs(), xpr.rhs())
{}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSEDENSEPRODUCT_H