blob: fbc8f8470c702e73957232625c6364e52e6a94af [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2019 David Tellenbach <david.tellenbach@tellnotes.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_NO_STATIC_ASSERT
#include "main.h"
template <typename Scalar>
void assertionTest()
{
typedef DiagonalMatrix<Scalar, 5> DiagMatrix5;
typedef DiagonalMatrix<Scalar, 7> DiagMatrix7;
typedef DiagonalMatrix<Scalar, Dynamic> DiagMatrixX;
Scalar raw[6];
for (int i = 0; i < 6; ++i) {
raw[i] = internal::random<Scalar>();
}
VERIFY_RAISES_ASSERT((DiagMatrix5{raw[0], raw[1], raw[2], raw[3]}));
VERIFY_RAISES_ASSERT((DiagMatrix5{raw[0], raw[1], raw[3]}));
VERIFY_RAISES_ASSERT((DiagMatrix7{raw[0], raw[1], raw[2], raw[3]}));
VERIFY_RAISES_ASSERT((DiagMatrixX {
{raw[0], raw[1], raw[2]},
{raw[3], raw[4], raw[5]}
}));
}
#define VERIFY_IMPLICIT_CONVERSION_3(DIAGTYPE, V0, V1, V2) \
DIAGTYPE d(V0, V1, V2); \
DIAGTYPE::DenseMatrixType Dense = d.toDenseMatrix(); \
VERIFY_IS_APPROX(Dense(0, 0), (Scalar)V0); \
VERIFY_IS_APPROX(Dense(1, 1), (Scalar)V1); \
VERIFY_IS_APPROX(Dense(2, 2), (Scalar)V2);
#define VERIFY_IMPLICIT_CONVERSION_4(DIAGTYPE, V0, V1, V2, V3) \
DIAGTYPE d(V0, V1, V2, V3); \
DIAGTYPE::DenseMatrixType Dense = d.toDenseMatrix(); \
VERIFY_IS_APPROX(Dense(0, 0), (Scalar)V0); \
VERIFY_IS_APPROX(Dense(1, 1), (Scalar)V1); \
VERIFY_IS_APPROX(Dense(2, 2), (Scalar)V2); \
VERIFY_IS_APPROX(Dense(3, 3), (Scalar)V3);
#define VERIFY_IMPLICIT_CONVERSION_5(DIAGTYPE, V0, V1, V2, V3, V4) \
DIAGTYPE d(V0, V1, V2, V3, V4); \
DIAGTYPE::DenseMatrixType Dense = d.toDenseMatrix(); \
VERIFY_IS_APPROX(Dense(0, 0), (Scalar)V0); \
VERIFY_IS_APPROX(Dense(1, 1), (Scalar)V1); \
VERIFY_IS_APPROX(Dense(2, 2), (Scalar)V2); \
VERIFY_IS_APPROX(Dense(3, 3), (Scalar)V3); \
VERIFY_IS_APPROX(Dense(4, 4), (Scalar)V4);
template<typename Scalar>
void constructorTest()
{
typedef DiagonalMatrix<Scalar, 0> DiagonalMatrix0;
typedef DiagonalMatrix<Scalar, 3> DiagonalMatrix3;
typedef DiagonalMatrix<Scalar, 4> DiagonalMatrix4;
typedef DiagonalMatrix<Scalar, Dynamic> DiagonalMatrixX;
Scalar raw[7];
for (int k = 0; k < 7; ++k) raw[k] = internal::random<Scalar>();
// Fixed-sized matrices
{
DiagonalMatrix0 a {{}};
VERIFY(a.rows() == 0);
VERIFY(a.cols() == 0);
typename DiagonalMatrix0::DenseMatrixType m = a.toDenseMatrix();
for (Index k = 0; k < a.rows(); ++k) VERIFY(m(k, k) == raw[k]);
}
{
DiagonalMatrix3 a {{raw[0], raw[1], raw[2]}};
VERIFY(a.rows() == 3);
VERIFY(a.cols() == 3);
typename DiagonalMatrix3::DenseMatrixType m = a.toDenseMatrix();
for (Index k = 0; k < a.rows(); ++k) VERIFY(m(k, k) == raw[k]);
}
{
DiagonalMatrix4 a {{raw[0], raw[1], raw[2], raw[3]}};
VERIFY(a.rows() == 4);
VERIFY(a.cols() == 4);
typename DiagonalMatrix4::DenseMatrixType m = a.toDenseMatrix();
for (Index k = 0; k < a.rows(); ++k) VERIFY(m(k, k) == raw[k]);
}
// dynamically sized matrices
{
DiagonalMatrixX a{{}};
VERIFY(a.rows() == 0);
VERIFY(a.rows() == 0);
typename DiagonalMatrixX::DenseMatrixType m = a.toDenseMatrix();
for (Index k = 0; k < a.rows(); ++k) VERIFY(m(k, k) == raw[k]);
}
{
DiagonalMatrixX a{{raw[0], raw[1], raw[2], raw[3], raw[4], raw[5], raw[6]}};
VERIFY(a.rows() == 7);
VERIFY(a.rows() == 7);
typename DiagonalMatrixX::DenseMatrixType m = a.toDenseMatrix();
for (Index k = 0; k < a.rows(); ++k) VERIFY(m(k, k) == raw[k]);
}
}
template<>
void constructorTest<float>()
{
typedef float Scalar;
typedef DiagonalMatrix<Scalar, 0> DiagonalMatrix0;
typedef DiagonalMatrix<Scalar, 3> DiagonalMatrix3;
typedef DiagonalMatrix<Scalar, 4> DiagonalMatrix4;
typedef DiagonalMatrix<Scalar, 5> DiagonalMatrix5;
typedef DiagonalMatrix<Scalar, Dynamic> DiagonalMatrixX;
Scalar raw[7];
for (int k = 0; k < 7; ++k) raw[k] = internal::random<Scalar>();
// Fixed-sized matrices
{
DiagonalMatrix0 a {{}};
VERIFY(a.rows() == 0);
VERIFY(a.cols() == 0);
typename DiagonalMatrix0::DenseMatrixType m = a.toDenseMatrix();
for (Index k = 0; k < a.rows(); ++k) VERIFY(m(k, k) == raw[k]);
}
{
DiagonalMatrix3 a {{raw[0], raw[1], raw[2]}};
VERIFY(a.rows() == 3);
VERIFY(a.cols() == 3);
typename DiagonalMatrix3::DenseMatrixType m = a.toDenseMatrix();
for (Index k = 0; k < a.rows(); ++k) VERIFY(m(k, k) == raw[k]);
}
{
DiagonalMatrix4 a {{raw[0], raw[1], raw[2], raw[3]}};
VERIFY(a.rows() == 4);
VERIFY(a.cols() == 4);
typename DiagonalMatrix4::DenseMatrixType m = a.toDenseMatrix();
for (Index k = 0; k < a.rows(); ++k) VERIFY(m(k, k) == raw[k]);
}
// dynamically sized matrices
{
DiagonalMatrixX a{{}};
VERIFY(a.rows() == 0);
VERIFY(a.rows() == 0);
typename DiagonalMatrixX::DenseMatrixType m = a.toDenseMatrix();
for (Index k = 0; k < a.rows(); ++k) VERIFY(m(k, k) == raw[k]);
}
{
DiagonalMatrixX a{{raw[0], raw[1], raw[2], raw[3], raw[4], raw[5], raw[6]}};
VERIFY(a.rows() == 7);
VERIFY(a.rows() == 7);
typename DiagonalMatrixX::DenseMatrixType m = a.toDenseMatrix();
for (Index k = 0; k < a.rows(); ++k) VERIFY(m(k, k) == raw[k]);
}
{ VERIFY_IMPLICIT_CONVERSION_3(DiagonalMatrix3, 1.2647, 2.56f, -3); }
{ VERIFY_IMPLICIT_CONVERSION_4(DiagonalMatrix4, 1.2647, 2.56f, -3, 3.23f); }
{ VERIFY_IMPLICIT_CONVERSION_5(DiagonalMatrix5, 1.2647, 2.56f, -3, 3.23f, 2); }
}
EIGEN_DECLARE_TEST(diagonal_matrix_variadic_ctor)
{
CALL_SUBTEST_1(assertionTest<unsigned char>());
CALL_SUBTEST_1(assertionTest<float>());
CALL_SUBTEST_1(assertionTest<Index>());
CALL_SUBTEST_1(assertionTest<int>());
CALL_SUBTEST_1(assertionTest<long int>());
CALL_SUBTEST_1(assertionTest<std::ptrdiff_t>());
CALL_SUBTEST_1(assertionTest<std::complex<double>>());
CALL_SUBTEST_2(constructorTest<unsigned char>());
CALL_SUBTEST_2(constructorTest<float>());
CALL_SUBTEST_2(constructorTest<Index>());
CALL_SUBTEST_2(constructorTest<int>());
CALL_SUBTEST_2(constructorTest<long int>());
CALL_SUBTEST_2(constructorTest<std::ptrdiff_t>());
CALL_SUBTEST_2(constructorTest<std::complex<double>>());
}