blob: e98382cc1840bb044d08fce908c53624a9da661f [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
#define EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
namespace Eigen {
/** \class TensorPadding
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor padding class.
* At the moment only padding with a constant value is supported.
*
*/
namespace internal {
template<typename PaddingDimensions, typename XprType>
struct traits<TensorPaddingOp<PaddingDimensions, XprType> > : public traits<XprType>
{
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
static const int NumDimensions = XprTraits::NumDimensions;
static const int Layout = XprTraits::Layout;
typedef typename XprTraits::PointerType PointerType;
};
template<typename PaddingDimensions, typename XprType>
struct eval<TensorPaddingOp<PaddingDimensions, XprType>, Eigen::Dense>
{
typedef const TensorPaddingOp<PaddingDimensions, XprType>& type;
};
template<typename PaddingDimensions, typename XprType>
struct nested<TensorPaddingOp<PaddingDimensions, XprType>, 1, typename eval<TensorPaddingOp<PaddingDimensions, XprType> >::type>
{
typedef TensorPaddingOp<PaddingDimensions, XprType> type;
};
} // end namespace internal
template<typename PaddingDimensions, typename XprType>
class TensorPaddingOp : public TensorBase<TensorPaddingOp<PaddingDimensions, XprType>, ReadOnlyAccessors>
{
public:
typedef typename Eigen::internal::traits<TensorPaddingOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename Eigen::internal::nested<TensorPaddingOp>::type Nested;
typedef typename Eigen::internal::traits<TensorPaddingOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorPaddingOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPaddingOp(const XprType& expr, const PaddingDimensions& padding_dims, const Scalar padding_value)
: m_xpr(expr), m_padding_dims(padding_dims), m_padding_value(padding_value) {}
EIGEN_DEVICE_FUNC
const PaddingDimensions& padding() const { return m_padding_dims; }
EIGEN_DEVICE_FUNC
Scalar padding_value() const { return m_padding_value; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
protected:
typename XprType::Nested m_xpr;
const PaddingDimensions m_padding_dims;
const Scalar m_padding_value;
};
// Eval as rvalue
template<typename PaddingDimensions, typename ArgType, typename Device>
struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device>
{
typedef TensorPaddingOp<PaddingDimensions, ArgType> XprType;
typedef typename XprType::Index Index;
static const int NumDims = internal::array_size<PaddingDimensions>::value;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
enum {
IsAligned = true,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = false,
PreferBlockAccess = false,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = true,
RawAccess = false
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value())
{
// The padding op doesn't change the rank of the tensor. Directly padding a scalar would lead
// to a vector, which doesn't make sense. Instead one should reshape the scalar into a vector
// of 1 element first and then pad.
EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
// Compute dimensions
m_dimensions = m_impl.dimensions();
for (int i = 0; i < NumDims; ++i) {
m_dimensions[i] += m_padding[i].first + m_padding[i].second;
}
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_inputStrides[0] = 1;
m_outputStrides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
}
m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1];
} else {
m_inputStrides[NumDims - 1] = 1;
m_outputStrides[NumDims] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1];
}
m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0];
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
m_impl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
eigen_assert(index < dimensions().TotalSize());
Index inputIndex = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
EIGEN_UNROLL_LOOP
for (int i = NumDims - 1; i > 0; --i) {
const Index idx = index / m_outputStrides[i];
if (isPaddingAtIndexForDim(idx, i)) {
return m_paddingValue;
}
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
if (isPaddingAtIndexForDim(index, 0)) {
return m_paddingValue;
}
inputIndex += (index - m_padding[0].first);
} else {
EIGEN_UNROLL_LOOP
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx = index / m_outputStrides[i+1];
if (isPaddingAtIndexForDim(idx, i)) {
return m_paddingValue;
}
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
index -= idx * m_outputStrides[i+1];
}
if (isPaddingAtIndexForDim(index, NumDims-1)) {
return m_paddingValue;
}
inputIndex += (index - m_padding[NumDims-1].first);
}
return m_impl.coeff(inputIndex);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
return packetColMajor(index);
}
return packetRowMajor(index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
TensorOpCost cost = m_impl.costPerCoeff(vectorized);
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
EIGEN_UNROLL_LOOP
for (int i = 0; i < NumDims; ++i)
updateCostPerDimension(cost, i, i == 0);
} else {
EIGEN_UNROLL_LOOP
for (int i = NumDims - 1; i >= 0; --i)
updateCostPerDimension(cost, i, i == NumDims - 1);
}
return cost;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return NULL; }
#ifdef EIGEN_USE_SYCL
// binding placeholder accessors to a command group handler for SYCL
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
m_impl.bind(cgh);
}
#endif
private:
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isPaddingAtIndexForDim(
Index index, int dim_index) const {
#if defined(EIGEN_HAS_INDEX_LIST)
return (!internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0) &&
index < m_padding[dim_index].first) ||
(!internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0) &&
index >= m_dimensions[dim_index] - m_padding[dim_index].second);
#else
return (index < m_padding[dim_index].first) ||
(index >= m_dimensions[dim_index] - m_padding[dim_index].second);
#endif
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isLeftPaddingCompileTimeZero(
int dim_index) const {
#if defined(EIGEN_HAS_INDEX_LIST)
return internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0);
#else
EIGEN_UNUSED_VARIABLE(dim_index);
return false;
#endif
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isRightPaddingCompileTimeZero(
int dim_index) const {
#if defined(EIGEN_HAS_INDEX_LIST)
return internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0);
#else
EIGEN_UNUSED_VARIABLE(dim_index);
return false;
#endif
}
void updateCostPerDimension(TensorOpCost& cost, int i, bool first) const {
const double in = static_cast<double>(m_impl.dimensions()[i]);
const double out = in + m_padding[i].first + m_padding[i].second;
if (out == 0)
return;
const double reduction = in / out;
cost *= reduction;
if (first) {
cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() +
reduction * (1 * TensorOpCost::AddCost<Index>()));
} else {
cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() +
2 * TensorOpCost::MulCost<Index>() +
reduction * (2 * TensorOpCost::MulCost<Index>() +
1 * TensorOpCost::DivCost<Index>()));
}
}
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
{
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
const Index initialIndex = index;
Index inputIndex = 0;
EIGEN_UNROLL_LOOP
for (int i = NumDims - 1; i > 0; --i) {
const Index firstIdx = index;
const Index lastIdx = index + PacketSize - 1;
const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i];
const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i];
const Index lastPaddedRight = m_outputStrides[i+1];
if (!isLeftPaddingCompileTimeZero(i) && lastIdx < lastPaddedLeft) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(m_paddingValue);
}
else if (!isRightPaddingCompileTimeZero(i) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(m_paddingValue);
}
else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) {
// all the coefficient are between the 2 padding zones.
const Index idx = index / m_outputStrides[i];
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
else {
// Every other case
return packetWithPossibleZero(initialIndex);
}
}
const Index lastIdx = index + PacketSize - 1;
const Index firstIdx = index;
const Index lastPaddedLeft = m_padding[0].first;
const Index firstPaddedRight = (m_dimensions[0] - m_padding[0].second);
const Index lastPaddedRight = m_outputStrides[1];
if (!isLeftPaddingCompileTimeZero(0) && lastIdx < lastPaddedLeft) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(m_paddingValue);
}
else if (!isRightPaddingCompileTimeZero(0) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(m_paddingValue);
}
else if ((isLeftPaddingCompileTimeZero(0) && isRightPaddingCompileTimeZero(0)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) {
// all the coefficient are between the 2 padding zones.
inputIndex += (index - m_padding[0].first);
return m_impl.template packet<Unaligned>(inputIndex);
}
// Every other case
return packetWithPossibleZero(initialIndex);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
{
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
const Index initialIndex = index;
Index inputIndex = 0;
EIGEN_UNROLL_LOOP
for (int i = 0; i < NumDims - 1; ++i) {
const Index firstIdx = index;
const Index lastIdx = index + PacketSize - 1;
const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1];
const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1];
const Index lastPaddedRight = m_outputStrides[i];
if (!isLeftPaddingCompileTimeZero(i) && lastIdx < lastPaddedLeft) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(m_paddingValue);
}
else if (!isRightPaddingCompileTimeZero(i) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(m_paddingValue);
}
else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) {
// all the coefficient are between the 2 padding zones.
const Index idx = index / m_outputStrides[i+1];
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
index -= idx * m_outputStrides[i+1];
}
else {
// Every other case
return packetWithPossibleZero(initialIndex);
}
}
const Index lastIdx = index + PacketSize - 1;
const Index firstIdx = index;
const Index lastPaddedLeft = m_padding[NumDims-1].first;
const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second);
const Index lastPaddedRight = m_outputStrides[NumDims-1];
if (!isLeftPaddingCompileTimeZero(NumDims-1) && lastIdx < lastPaddedLeft) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(m_paddingValue);
}
else if (!isRightPaddingCompileTimeZero(NumDims-1) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(m_paddingValue);
}
else if ((isLeftPaddingCompileTimeZero(NumDims-1) && isRightPaddingCompileTimeZero(NumDims-1)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) {
// all the coefficient are between the 2 padding zones.
inputIndex += (index - m_padding[NumDims-1].first);
return m_impl.template packet<Unaligned>(inputIndex);
}
// Every other case
return packetWithPossibleZero(initialIndex);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
{
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
EIGEN_UNROLL_LOOP
for (int i = 0; i < PacketSize; ++i) {
values[i] = coeff(index+i);
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
}
Dimensions m_dimensions;
array<Index, NumDims+1> m_outputStrides;
array<Index, NumDims> m_inputStrides;
TensorEvaluator<ArgType, Device> m_impl;
PaddingDimensions m_padding;
Scalar m_paddingValue;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_PADDING_H