blob: 6c95d0a6c058328cdc53e784119c75754e65366b [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11META_H
#define EIGEN_CXX11META_H
#include <vector>
#include "EmulateArray.h"
// Emulate the cxx11 functionality that we need if the compiler doesn't support it.
// Visual studio 2015 doesn't advertise itself as cxx11 compliant, although it
// supports enough of the standard for our needs
#if __cplusplus > 199711L || EIGEN_COMP_MSVC >= 1900
#include "CXX11Workarounds.h"
namespace Eigen {
namespace internal {
/** \internal
* \file CXX11/util/CXX11Meta.h
* This file contains generic metaprogramming classes which are not specifically related to Eigen.
* This file expands upon Core/util/Meta.h and adds support for C++11 specific features.
*/
template<typename... tt>
struct type_list { constexpr static int count = sizeof...(tt); };
template<typename t, typename... tt>
struct type_list<t, tt...> { constexpr static int count = sizeof...(tt) + 1; typedef t first_type; };
template<typename T, T... nn>
struct numeric_list { constexpr static std::size_t count = sizeof...(nn); };
template<typename T, T n, T... nn>
struct numeric_list<T, n, nn...> { static const std::size_t count = sizeof...(nn) + 1; const static T first_value = n; };
/* numeric list constructors
*
* equivalencies:
* constructor result
* typename gen_numeric_list<int, 5>::type numeric_list<int, 0,1,2,3,4>
* typename gen_numeric_list_reversed<int, 5>::type numeric_list<int, 4,3,2,1,0>
* typename gen_numeric_list_swapped_pair<int, 5,1,2>::type numeric_list<int, 0,2,1,3,4>
* typename gen_numeric_list_repeated<int, 0, 5>::type numeric_list<int, 0,0,0,0,0>
*/
template<typename T, std::size_t n, T start = 0, T... ii> struct gen_numeric_list : gen_numeric_list<T, n-1, start, start + n-1, ii...> {};
template<typename T, T start, T... ii> struct gen_numeric_list<T, 0, start, ii...> { typedef numeric_list<T, ii...> type; };
template<typename T, std::size_t n, T start = 0, T... ii> struct gen_numeric_list_reversed : gen_numeric_list_reversed<T, n-1, start, ii..., start + n-1> {};
template<typename T, T start, T... ii> struct gen_numeric_list_reversed<T, 0, start, ii...> { typedef numeric_list<T, ii...> type; };
template<typename T, std::size_t n, T a, T b, T start = 0, T... ii> struct gen_numeric_list_swapped_pair : gen_numeric_list_swapped_pair<T, n-1, a, b, start, (start + n-1) == a ? b : ((start + n-1) == b ? a : (start + n-1)), ii...> {};
template<typename T, T a, T b, T start, T... ii> struct gen_numeric_list_swapped_pair<T, 0, a, b, start, ii...> { typedef numeric_list<T, ii...> type; };
template<typename T, std::size_t n, T V, T... nn> struct gen_numeric_list_repeated : gen_numeric_list_repeated<T, n-1, V, V, nn...> {};
template<typename T, T V, T... nn> struct gen_numeric_list_repeated<T, 0, V, nn...> { typedef numeric_list<T, nn...> type; };
/* list manipulation: concatenate */
template<class a, class b> struct concat;
template<typename... as, typename... bs> struct concat<type_list<as...>, type_list<bs...>> { typedef type_list<as..., bs...> type; };
template<typename T, T... as, T... bs> struct concat<numeric_list<T, as...>, numeric_list<T, bs...> > { typedef numeric_list<T, as..., bs...> type; };
template<typename... p> struct mconcat;
template<typename a> struct mconcat<a> { typedef a type; };
template<typename a, typename b> struct mconcat<a, b> : concat<a, b> {};
template<typename a, typename b, typename... cs> struct mconcat<a, b, cs...> : concat<a, typename mconcat<b, cs...>::type> {};
/* list manipulation: extract slices */
template<int n, typename x> struct take;
template<int n, typename a, typename... as> struct take<n, type_list<a, as...>> : concat<type_list<a>, typename take<n-1, type_list<as...>>::type> {};
template<int n> struct take<n, type_list<>> { typedef type_list<> type; };
template<typename a, typename... as> struct take<0, type_list<a, as...>> { typedef type_list<> type; };
template<> struct take<0, type_list<>> { typedef type_list<> type; };
template<typename T, int n, T a, T... as> struct take<n, numeric_list<T, a, as...>> : concat<numeric_list<T, a>, typename take<n-1, numeric_list<T, as...>>::type> {};
template<typename T, int n> struct take<n, numeric_list<T>> { typedef numeric_list<T> type; };
template<typename T, T a, T... as> struct take<0, numeric_list<T, a, as...>> { typedef numeric_list<T> type; };
template<typename T> struct take<0, numeric_list<T>> { typedef numeric_list<T> type; };
template<typename T, int n, T... ii> struct h_skip_helper_numeric;
template<typename T, int n, T i, T... ii> struct h_skip_helper_numeric<T, n, i, ii...> : h_skip_helper_numeric<T, n-1, ii...> {};
template<typename T, T i, T... ii> struct h_skip_helper_numeric<T, 0, i, ii...> { typedef numeric_list<T, i, ii...> type; };
template<typename T, int n> struct h_skip_helper_numeric<T, n> { typedef numeric_list<T> type; };
template<typename T> struct h_skip_helper_numeric<T, 0> { typedef numeric_list<T> type; };
template<int n, typename... tt> struct h_skip_helper_type;
template<int n, typename t, typename... tt> struct h_skip_helper_type<n, t, tt...> : h_skip_helper_type<n-1, tt...> {};
template<typename t, typename... tt> struct h_skip_helper_type<0, t, tt...> { typedef type_list<t, tt...> type; };
template<int n> struct h_skip_helper_type<n> { typedef type_list<> type; };
template<> struct h_skip_helper_type<0> { typedef type_list<> type; };
template<int n>
struct h_skip {
template<typename T, T... ii>
constexpr static EIGEN_STRONG_INLINE typename h_skip_helper_numeric<T, n, ii...>::type helper(numeric_list<T, ii...>) { return typename h_skip_helper_numeric<T, n, ii...>::type(); }
template<typename... tt>
constexpr static EIGEN_STRONG_INLINE typename h_skip_helper_type<n, tt...>::type helper(type_list<tt...>) { return typename h_skip_helper_type<n, tt...>::type(); }
};
template<int n, typename a> struct skip { typedef decltype(h_skip<n>::helper(a())) type; };
template<int start, int count, typename a> struct slice : take<count, typename skip<start, a>::type> {};
/* list manipulation: retrieve single element from list */
template<int n, typename x> struct get;
template<int n, typename a, typename... as> struct get<n, type_list<a, as...>> : get<n-1, type_list<as...>> {};
template<typename a, typename... as> struct get<0, type_list<a, as...>> { typedef a type; };
template<typename T, int n, T a, T... as> struct get<n, numeric_list<T, a, as...>> : get<n-1, numeric_list<T, as...>> {};
template<typename T, T a, T... as> struct get<0, numeric_list<T, a, as...>> { constexpr static T value = a; };
template<std::size_t n, typename T, T a, T... as> constexpr T array_get(const numeric_list<T, a, as...>&) {
return get<(int)n, numeric_list<T, a, as...>>::value;
}
/* always get type, regardless of dummy; good for parameter pack expansion */
template<typename T, T dummy, typename t> struct id_numeric { typedef t type; };
template<typename dummy, typename t> struct id_type { typedef t type; };
/* equality checking, flagged version */
template<typename a, typename b> struct is_same_gf : is_same<a, b> { constexpr static int global_flags = 0; };
/* apply_op to list */
template<
bool from_left, // false
template<typename, typename> class op,
typename additional_param,
typename... values
>
struct h_apply_op_helper { typedef type_list<typename op<values, additional_param>::type...> type; };
template<
template<typename, typename> class op,
typename additional_param,
typename... values
>
struct h_apply_op_helper<true, op, additional_param, values...> { typedef type_list<typename op<additional_param, values>::type...> type; };
template<
bool from_left,
template<typename, typename> class op,
typename additional_param
>
struct h_apply_op
{
template<typename... values>
constexpr static typename h_apply_op_helper<from_left, op, additional_param, values...>::type helper(type_list<values...>)
{ return typename h_apply_op_helper<from_left, op, additional_param, values...>::type(); }
};
template<
template<typename, typename> class op,
typename additional_param,
typename a
>
struct apply_op_from_left { typedef decltype(h_apply_op<true, op, additional_param>::helper(a())) type; };
template<
template<typename, typename> class op,
typename additional_param,
typename a
>
struct apply_op_from_right { typedef decltype(h_apply_op<false, op, additional_param>::helper(a())) type; };
/* see if an element is in a list */
template<
template<typename, typename> class test,
typename check_against,
typename h_list,
bool last_check_positive = false
>
struct contained_in_list;
template<
template<typename, typename> class test,
typename check_against,
typename h_list
>
struct contained_in_list<test, check_against, h_list, true>
{
constexpr static bool value = true;
};
template<
template<typename, typename> class test,
typename check_against,
typename a,
typename... as
>
struct contained_in_list<test, check_against, type_list<a, as...>, false> : contained_in_list<test, check_against, type_list<as...>, test<check_against, a>::value> {};
template<
template<typename, typename> class test,
typename check_against
EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty)
>
struct contained_in_list<test, check_against, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, false> { constexpr static bool value = false; };
/* see if an element is in a list and check for global flags */
template<
template<typename, typename> class test,
typename check_against,
typename h_list,
int default_flags = 0,
bool last_check_positive = false,
int last_check_flags = default_flags
>
struct contained_in_list_gf;
template<
template<typename, typename> class test,
typename check_against,
typename h_list,
int default_flags,
int last_check_flags
>
struct contained_in_list_gf<test, check_against, h_list, default_flags, true, last_check_flags>
{
constexpr static bool value = true;
constexpr static int global_flags = last_check_flags;
};
template<
template<typename, typename> class test,
typename check_against,
typename a,
typename... as,
int default_flags,
int last_check_flags
>
struct contained_in_list_gf<test, check_against, type_list<a, as...>, default_flags, false, last_check_flags> : contained_in_list_gf<test, check_against, type_list<as...>, default_flags, test<check_against, a>::value, test<check_against, a>::global_flags> {};
template<
template<typename, typename> class test,
typename check_against
EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty),
int default_flags,
int last_check_flags
>
struct contained_in_list_gf<test, check_against, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, default_flags, false, last_check_flags> { constexpr static bool value = false; constexpr static int global_flags = default_flags; };
/* generic reductions */
template<
typename Reducer,
typename... Ts
> struct reduce;
template<
typename Reducer
> struct reduce<Reducer>
{
EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE int run() { return Reducer::Identity; }
};
template<
typename Reducer,
typename A
> struct reduce<Reducer, A>
{
EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE A run(A a) { return a; }
};
template<
typename Reducer,
typename A,
typename... Ts
> struct reduce<Reducer, A, Ts...>
{
EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(A a, Ts... ts) -> decltype(Reducer::run(a, reduce<Reducer, Ts...>::run(ts...))) {
return Reducer::run(a, reduce<Reducer, Ts...>::run(ts...));
}
};
/* generic binary operations */
struct sum_op {
template<typename A, typename B> EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a + b) { return a + b; }
static constexpr int Identity = 0;
};
struct product_op {
template<typename A, typename B> EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a * b) { return a * b; }
static constexpr int Identity = 1;
};
struct logical_and_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a && b) { return a && b; } };
struct logical_or_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a || b) { return a || b; } };
struct equal_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a == b) { return a == b; } };
struct not_equal_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a != b) { return a != b; } };
struct lesser_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a < b) { return a < b; } };
struct lesser_equal_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a <= b) { return a <= b; } };
struct greater_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a > b) { return a > b; } };
struct greater_equal_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a >= b) { return a >= b; } };
/* generic unary operations */
struct not_op { template<typename A> constexpr static EIGEN_STRONG_INLINE auto run(A a) -> decltype(!a) { return !a; } };
struct negation_op { template<typename A> constexpr static EIGEN_STRONG_INLINE auto run(A a) -> decltype(-a) { return -a; } };
struct greater_equal_zero_op { template<typename A> constexpr static EIGEN_STRONG_INLINE auto run(A a) -> decltype(a >= 0) { return a >= 0; } };
/* reductions for lists */
// using auto -> return value spec makes ICC 13.0 and 13.1 crash here, so we have to hack it
// together in front... (13.0 doesn't work with array_prod/array_reduce/... anyway, but 13.1
// does...
template<typename... Ts>
EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE decltype(reduce<product_op, Ts...>::run((*((Ts*)0))...)) arg_prod(Ts... ts)
{
return reduce<product_op, Ts...>::run(ts...);
}
template<typename... Ts>
constexpr EIGEN_STRONG_INLINE decltype(reduce<sum_op, Ts...>::run((*((Ts*)0))...)) arg_sum(Ts... ts)
{
return reduce<sum_op, Ts...>::run(ts...);
}
/* reverse arrays */
template<typename Array, int... n>
constexpr EIGEN_STRONG_INLINE Array h_array_reverse(Array arr, numeric_list<int, n...>)
{
return {{array_get<sizeof...(n) - n - 1>(arr)...}};
}
template<typename T, std::size_t N>
constexpr EIGEN_STRONG_INLINE array<T, N> array_reverse(array<T, N> arr)
{
return h_array_reverse(arr, typename gen_numeric_list<int, N>::type());
}
/* generic array reductions */
// can't reuse standard reduce() interface above because Intel's Compiler
// *really* doesn't like it, so we just reimplement the stuff
// (start from N - 1 and work down to 0 because specialization for
// n == N - 1 also doesn't work in Intel's compiler, so it goes into
// an infinite loop)
template<typename Reducer, typename T, std::size_t N, std::size_t n = N - 1>
struct h_array_reduce {
EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(array<T, N> arr, T identity) -> decltype(Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr, identity), array_get<n>(arr)))
{
return Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr, identity), array_get<n>(arr));
}
};
template<typename Reducer, typename T, std::size_t N>
struct h_array_reduce<Reducer, T, N, 0>
{
EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE T run(const array<T, N>& arr, T)
{
return array_get<0>(arr);
}
};
template<typename Reducer, typename T>
struct h_array_reduce<Reducer, T, 0>
{
EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE T run(const array<T, 0>&, T identity)
{
return identity;
}
};
template<typename Reducer, typename T, std::size_t N>
EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE auto array_reduce(const array<T, N>& arr, T identity) -> decltype(h_array_reduce<Reducer, T, N>::run(arr, identity))
{
return h_array_reduce<Reducer, T, N>::run(arr, identity);
}
/* standard array reductions */
template<typename T, std::size_t N>
EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE auto array_sum(const array<T, N>& arr) -> decltype(array_reduce<sum_op, T, N>(arr, static_cast<T>(0)))
{
return array_reduce<sum_op, T, N>(arr, static_cast<T>(0));
}
template<typename T, std::size_t N>
EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE auto array_prod(const array<T, N>& arr) -> decltype(array_reduce<product_op, T, N>(arr, static_cast<T>(1)))
{
return array_reduce<product_op, T, N>(arr, static_cast<T>(1));
}
template<typename t>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const std::vector<t>& a) {
eigen_assert(a.size() > 0);
t prod = 1;
for (size_t i = 0; i < a.size(); ++i) { prod *= a[i]; }
return prod;
}
/* zip an array */
template<typename Op, typename A, typename B, std::size_t N, int... n>
constexpr EIGEN_STRONG_INLINE array<decltype(Op::run(A(), B())),N> h_array_zip(array<A, N> a, array<B, N> b, numeric_list<int, n...>)
{
return array<decltype(Op::run(A(), B())),N>{{ Op::run(array_get<n>(a), array_get<n>(b))... }};
}
template<typename Op, typename A, typename B, std::size_t N>
constexpr EIGEN_STRONG_INLINE array<decltype(Op::run(A(), B())),N> array_zip(array<A, N> a, array<B, N> b)
{
return h_array_zip<Op>(a, b, typename gen_numeric_list<int, N>::type());
}
/* zip an array and reduce the result */
template<typename Reducer, typename Op, typename A, typename B, std::size_t N, int... n>
constexpr EIGEN_STRONG_INLINE auto h_array_zip_and_reduce(array<A, N> a, array<B, N> b, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(array_get<n>(a), array_get<n>(b))...))
{
return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(array_get<n>(a), array_get<n>(b))...);
}
template<typename Reducer, typename Op, typename A, typename B, std::size_t N>
constexpr EIGEN_STRONG_INLINE auto array_zip_and_reduce(array<A, N> a, array<B, N> b) -> decltype(h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type()))
{
return h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type());
}
/* apply stuff to an array */
template<typename Op, typename A, std::size_t N, int... n>
constexpr EIGEN_STRONG_INLINE array<decltype(Op::run(A())),N> h_array_apply(array<A, N> a, numeric_list<int, n...>)
{
return array<decltype(Op::run(A())),N>{{ Op::run(array_get<n>(a))... }};
}
template<typename Op, typename A, std::size_t N>
constexpr EIGEN_STRONG_INLINE array<decltype(Op::run(A())),N> array_apply(array<A, N> a)
{
return h_array_apply<Op>(a, typename gen_numeric_list<int, N>::type());
}
/* apply stuff to an array and reduce */
template<typename Reducer, typename Op, typename A, std::size_t N, int... n>
constexpr EIGEN_STRONG_INLINE auto h_array_apply_and_reduce(array<A, N> arr, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(array_get<n>(arr))...))
{
return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(array_get<n>(arr))...);
}
template<typename Reducer, typename Op, typename A, std::size_t N>
constexpr EIGEN_STRONG_INLINE auto array_apply_and_reduce(array<A, N> a) -> decltype(h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type()))
{
return h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type());
}
/* repeat a value n times (and make an array out of it
* usage:
* array<int, 16> = repeat<16>(42);
*/
template<int n>
struct h_repeat
{
template<typename t, int... ii>
constexpr static EIGEN_STRONG_INLINE array<t, n> run(t v, numeric_list<int, ii...>)
{
return {{ typename id_numeric<int, ii, t>::type(v)... }};
}
};
template<int n, typename t>
constexpr array<t, n> repeat(t v) { return h_repeat<n>::run(v, typename gen_numeric_list<int, n>::type()); }
/* instantiate a class by a C-style array */
template<class InstType, typename ArrType, std::size_t N, bool Reverse, typename... Ps>
struct h_instantiate_by_c_array;
template<class InstType, typename ArrType, std::size_t N, typename... Ps>
struct h_instantiate_by_c_array<InstType, ArrType, N, false, Ps...>
{
static InstType run(ArrType* arr, Ps... args)
{
return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, Ps..., ArrType>::run(arr + 1, args..., arr[0]);
}
};
template<class InstType, typename ArrType, std::size_t N, typename... Ps>
struct h_instantiate_by_c_array<InstType, ArrType, N, true, Ps...>
{
static InstType run(ArrType* arr, Ps... args)
{
return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, ArrType, Ps...>::run(arr + 1, arr[0], args...);
}
};
template<class InstType, typename ArrType, typename... Ps>
struct h_instantiate_by_c_array<InstType, ArrType, 0, false, Ps...>
{
static InstType run(ArrType* arr, Ps... args)
{
(void)arr;
return InstType(args...);
}
};
template<class InstType, typename ArrType, typename... Ps>
struct h_instantiate_by_c_array<InstType, ArrType, 0, true, Ps...>
{
static InstType run(ArrType* arr, Ps... args)
{
(void)arr;
return InstType(args...);
}
};
template<class InstType, typename ArrType, std::size_t N, bool Reverse = false>
InstType instantiate_by_c_array(ArrType* arr)
{
return h_instantiate_by_c_array<InstType, ArrType, N, Reverse>::run(arr);
}
} // end namespace internal
} // end namespace Eigen
#else // Non C++11, fallback to emulation mode
#include "EmulateCXX11Meta.h"
#endif
#endif // EIGEN_CXX11META_H