blob: 2a833b0a48db7a64703e5bc8a25fff36d32825c0 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_EULERSYSTEM_H
#define EIGEN_EULERSYSTEM_H
namespace Eigen
{
// Forward declarations
template <typename _Scalar, class _System>
class EulerAngles;
namespace internal
{
// TODO: Add this trait to the Eigen internal API?
template <int Num, bool IsPositive = (Num > 0)>
struct Abs
{
enum { value = Num };
};
template <int Num>
struct Abs<Num, false>
{
enum { value = -Num };
};
template <int Axis>
struct IsValidAxis
{
enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
};
template<typename System,
typename Other,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct eulerangles_assign_impl;
}
#define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
/** \brief Representation of a fixed signed rotation axis for EulerSystem.
*
* \ingroup EulerAngles_Module
*
* Values here represent:
* - The axis of the rotation: X, Y or Z.
* - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)
*
* Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
*
* For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
*/
enum EulerAxis
{
EULER_X = 1, /*!< the X axis */
EULER_Y = 2, /*!< the Y axis */
EULER_Z = 3 /*!< the Z axis */
};
/** \class EulerSystem
*
* \ingroup EulerAngles_Module
*
* \brief Represents a fixed Euler rotation system.
*
* This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
*
* You can use this class to get two things:
* - Build an Euler system, and then pass it as a template parameter to EulerAngles.
* - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan)
*
* Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
* This meta-class store constantly those signed axes. (see \ref EulerAxis)
*
* ### Types of Euler systems ###
*
* All and only valid 3 dimension Euler rotation over standard
* signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
* - all axes X, Y, Z in each valid order (see below what order is valid)
* - rotation over the axis is supported both over the positive and negative directions.
* - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite).
*
* Since EulerSystem support both positive and negative directions,
* you may call this rotation distinction in other names:
* - _right handed_ or _left handed_
* - _counterclockwise_ or _clockwise_
*
* Notice all axed combination are valid, and would trigger a static assertion.
* Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
* This yield two and only two classes:
* - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
* - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
* and the second is different, e.g. {X,Y,X}
*
* ### Intrinsic vs extrinsic Euler systems ###
*
* Only intrinsic Euler systems are supported for simplicity.
* If you want to use extrinsic Euler systems,
* just use the equal intrinsic opposite order for axes and angles.
* I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
*
* ### Convenient user typedefs ###
*
* Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
* in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ.
*
* ### Additional reading ###
*
* More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
*
* \tparam _AlphaAxis the first fixed EulerAxis
*
* \tparam _BetaAxis the second fixed EulerAxis
*
* \tparam _GammaAxis the third fixed EulerAxis
*/
template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
class EulerSystem
{
public:
// It's defined this way and not as enum, because I think
// that enum is not guerantee to support negative numbers
/** The first rotation axis */
static const int AlphaAxis = _AlphaAxis;
/** The second rotation axis */
static const int BetaAxis = _BetaAxis;
/** The third rotation axis */
static const int GammaAxis = _GammaAxis;
enum
{
AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */
BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */
IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< whether beta axis is negative */
IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */
// Parity is even if alpha axis X is followed by beta axis Y, or Y is followed
// by Z, or Z is followed by X; otherwise it is odd.
IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< whether the Euler system is odd */
IsEven = IsOdd ? 0 : 1, /*!< whether the Euler system is even */
IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */
};
private:
EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value,
ALPHA_AXIS_IS_INVALID);
EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value,
BETA_AXIS_IS_INVALID);
EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value,
GAMMA_AXIS_IS_INVALID);
EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs,
ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS);
EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs,
BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);
static const int
// I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system.
// They are used in this class converters.
// They are always different from each other, and their possible values are: 0, 1, or 2.
I_ = AlphaAxisAbs - 1,
J_ = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
K_ = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
;
// TODO: Get @mat parameter in form that avoids double evaluation.
template <typename Derived>
static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
{
using std::atan2;
using std::sqrt;
typedef typename Derived::Scalar Scalar;
const Scalar plusMinus = IsEven? 1 : -1;
const Scalar minusPlus = IsOdd? 1 : -1;
const Scalar Rsum = sqrt((mat(I_,I_) * mat(I_,I_) + mat(I_,J_) * mat(I_,J_) + mat(J_,K_) * mat(J_,K_) + mat(K_,K_) * mat(K_,K_))/2);
res[1] = atan2(plusMinus * mat(I_,K_), Rsum);
// There is a singularity when cos(beta) == 0
if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// cos(beta) != 0
res[0] = atan2(minusPlus * mat(J_, K_), mat(K_, K_));
res[2] = atan2(minusPlus * mat(I_, J_), mat(I_, I_));
}
else if(plusMinus * mat(I_, K_) > 0) {// cos(beta) == 0 and sin(beta) == 1
Scalar spos = mat(J_, I_) + plusMinus * mat(K_, J_); // 2*sin(alpha + plusMinus * gamma
Scalar cpos = mat(J_, J_) + minusPlus * mat(K_, I_); // 2*cos(alpha + plusMinus * gamma)
Scalar alphaPlusMinusGamma = atan2(spos, cpos);
res[0] = alphaPlusMinusGamma;
res[2] = 0;
}
else {// cos(beta) == 0 and sin(beta) == -1
Scalar sneg = plusMinus * (mat(K_, J_) + minusPlus * mat(J_, I_)); // 2*sin(alpha + minusPlus*gamma)
Scalar cneg = mat(J_, J_) + plusMinus * mat(K_, I_); // 2*cos(alpha + minusPlus*gamma)
Scalar alphaMinusPlusBeta = atan2(sneg, cneg);
res[0] = alphaMinusPlusBeta;
res[2] = 0;
}
}
template <typename Derived>
static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res,
const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
{
using std::atan2;
using std::sqrt;
typedef typename Derived::Scalar Scalar;
const Scalar plusMinus = IsEven? 1 : -1;
const Scalar minusPlus = IsOdd? 1 : -1;
const Scalar Rsum = sqrt((mat(I_, J_) * mat(I_, J_) + mat(I_, K_) * mat(I_, K_) + mat(J_, I_) * mat(J_, I_) + mat(K_, I_) * mat(K_, I_)) / 2);
res[1] = atan2(Rsum, mat(I_, I_));
// There is a singularity when sin(beta) == 0
if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// sin(beta) != 0
res[0] = atan2(mat(J_, I_), minusPlus * mat(K_, I_));
res[2] = atan2(mat(I_, J_), plusMinus * mat(I_, K_));
}
else if(mat(I_, I_) > 0) {// sin(beta) == 0 and cos(beta) == 1
Scalar spos = plusMinus * mat(K_, J_) + minusPlus * mat(J_, K_); // 2*sin(alpha + gamma)
Scalar cpos = mat(J_, J_) + mat(K_, K_); // 2*cos(alpha + gamma)
res[0] = atan2(spos, cpos);
res[2] = 0;
}
else {// sin(beta) == 0 and cos(beta) == -1
Scalar sneg = plusMinus * mat(K_, J_) + plusMinus * mat(J_, K_); // 2*sin(alpha - gamma)
Scalar cneg = mat(J_, J_) - mat(K_, K_); // 2*cos(alpha - gamma)
res[0] = atan2(sneg, cneg);
res[2] = 0;
}
}
template<typename Scalar>
static void CalcEulerAngles(
EulerAngles<Scalar, EulerSystem>& res,
const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
{
CalcEulerAngles_imp(
res.angles(), mat,
typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
if (IsAlphaOpposite)
res.alpha() = -res.alpha();
if (IsBetaOpposite)
res.beta() = -res.beta();
if (IsGammaOpposite)
res.gamma() = -res.gamma();
}
template <typename _Scalar, class _System>
friend class Eigen::EulerAngles;
template<typename System,
typename Other,
int OtherRows,
int OtherCols>
friend struct internal::eulerangles_assign_impl;
};
#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
/** \ingroup EulerAngles_Module */ \
typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)
EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X)
EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y)
EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X)
EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X)
EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y)
EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z)
EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y)
EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y)
EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z)
EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X)
EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z)
}
#endif // EIGEN_EULERSYSTEM_H