blob: 19c25604d5625adc1ce25709753dacbd00cac54d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PRODUCTEVALUATORS_H
#define EIGEN_PRODUCTEVALUATORS_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
/** \internal
* Evaluator of a product expression.
* Since products require special treatments to handle all possible cases,
* we simply defer the evaluation logic to a product_evaluator class
* which offers more partial specialization possibilities.
*
* \sa class product_evaluator
*/
template <typename Lhs, typename Rhs, int Options>
struct evaluator<Product<Lhs, Rhs, Options>> : public product_evaluator<Product<Lhs, Rhs, Options>> {
typedef Product<Lhs, Rhs, Options> XprType;
typedef product_evaluator<XprType> Base;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {}
};
// Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B"
// TODO we should apply that rule only if that's really helpful
template <typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_product_op<Scalar1, Scalar2>,
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
const Product<Lhs, Rhs, DefaultProduct>>> {
static const bool value = true;
};
template <typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
struct evaluator<CwiseBinaryOp<internal::scalar_product_op<Scalar1, Scalar2>,
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
const Product<Lhs, Rhs, DefaultProduct>>>
: public evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1, Lhs, product), Rhs, DefaultProduct>> {
typedef CwiseBinaryOp<internal::scalar_product_op<Scalar1, Scalar2>,
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
const Product<Lhs, Rhs, DefaultProduct>>
XprType;
typedef evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1, Lhs, product), Rhs, DefaultProduct>> Base;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
: Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs()) {}
};
template <typename Lhs, typename Rhs, int DiagIndex>
struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex>>
: public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>> {
typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>> Base;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
: Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()), xpr.index())) {}
};
// Helper class to perform a matrix product with the destination at hand.
// Depending on the sizes of the factors, there are different evaluation strategies
// as controlled by internal::product_type.
template <typename Lhs, typename Rhs, typename LhsShape = typename evaluator_traits<Lhs>::Shape,
typename RhsShape = typename evaluator_traits<Rhs>::Shape,
int ProductType = internal::product_type<Lhs, Rhs>::value>
struct generic_product_impl;
template <typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<Product<Lhs, Rhs, DefaultProduct>> {
static const bool value = true;
};
// This is the default evaluator implementation for products:
// It creates a temporary and call generic_product_impl
template <typename Lhs, typename Rhs, int Options, int ProductTag, typename LhsShape, typename RhsShape>
struct product_evaluator<Product<Lhs, Rhs, Options>, ProductTag, LhsShape, RhsShape>
: public evaluator<typename Product<Lhs, Rhs, Options>::PlainObject> {
typedef Product<Lhs, Rhs, Options> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
enum { Flags = Base::Flags | EvalBeforeNestingBit };
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit product_evaluator(const XprType& xpr)
: m_result(xpr.rows(), xpr.cols()) {
internal::construct_at<Base>(this, m_result);
// FIXME shall we handle nested_eval here?,
// if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in
// permutation_matrix_product, transposition_matrix_product, etc.)
// typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
// typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
// typedef internal::remove_all_t<LhsNested> LhsNestedCleaned;
// typedef internal::remove_all_t<RhsNested> RhsNestedCleaned;
//
// const LhsNested lhs(xpr.lhs());
// const RhsNested rhs(xpr.rhs());
//
// generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs);
generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
}
protected:
PlainObject m_result;
};
// The following three shortcuts are enabled only if the scalar types match exactly.
// TODO: we could enable them for different scalar types when the product is not vectorized.
// Dense = Product
template <typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
struct Assignment<DstXprType, Product<Lhs, Rhs, Options>, internal::assign_op<Scalar, Scalar>, Dense2Dense,
std::enable_if_t<(Options == DefaultProduct || Options == AliasFreeProduct)>> {
typedef Product<Lhs, Rhs, Options> SrcXprType;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType& dst, const SrcXprType& src,
const internal::assign_op<Scalar, Scalar>&) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols);
// FIXME shall we handle nested_eval here?
generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs());
}
};
// Dense += Product
template <typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
struct Assignment<DstXprType, Product<Lhs, Rhs, Options>, internal::add_assign_op<Scalar, Scalar>, Dense2Dense,
std::enable_if_t<(Options == DefaultProduct || Options == AliasFreeProduct)>> {
typedef Product<Lhs, Rhs, Options> SrcXprType;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType& dst, const SrcXprType& src,
const internal::add_assign_op<Scalar, Scalar>&) {
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
// FIXME shall we handle nested_eval here?
generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs());
}
};
// Dense -= Product
template <typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
struct Assignment<DstXprType, Product<Lhs, Rhs, Options>, internal::sub_assign_op<Scalar, Scalar>, Dense2Dense,
std::enable_if_t<(Options == DefaultProduct || Options == AliasFreeProduct)>> {
typedef Product<Lhs, Rhs, Options> SrcXprType;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType& dst, const SrcXprType& src,
const internal::sub_assign_op<Scalar, Scalar>&) {
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
// FIXME shall we handle nested_eval here?
generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs());
}
};
// Dense ?= scalar * Product
// TODO we should apply that rule if that's really helpful
// for instance, this is not good for inner products
template <typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis,
typename Plain>
struct Assignment<DstXprType,
CwiseBinaryOp<internal::scalar_product_op<ScalarBis, Scalar>,
const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>, Plain>,
const Product<Lhs, Rhs, DefaultProduct>>,
AssignFunc, Dense2Dense> {
typedef CwiseBinaryOp<internal::scalar_product_op<ScalarBis, Scalar>,
const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>, Plain>,
const Product<Lhs, Rhs, DefaultProduct>>
SrcXprType;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType& dst, const SrcXprType& src,
const AssignFunc& func) {
call_assignment_no_alias(dst, (src.lhs().functor().m_other * src.rhs().lhs()) * src.rhs().rhs(), func);
}
};
//----------------------------------------
// Catch "Dense ?= xpr + Product<>" expression to save one temporary
// FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct
template <typename OtherXpr, typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<
CwiseBinaryOp<
internal::scalar_sum_op<typename OtherXpr::Scalar, typename Product<Lhs, Rhs, DefaultProduct>::Scalar>,
const OtherXpr, const Product<Lhs, Rhs, DefaultProduct>>,
DenseShape> {
static const bool value = true;
};
template <typename OtherXpr, typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<
CwiseBinaryOp<
internal::scalar_difference_op<typename OtherXpr::Scalar, typename Product<Lhs, Rhs, DefaultProduct>::Scalar>,
const OtherXpr, const Product<Lhs, Rhs, DefaultProduct>>,
DenseShape> {
static const bool value = true;
};
template <typename DstXprType, typename OtherXpr, typename ProductType, typename Func1, typename Func2>
struct assignment_from_xpr_op_product {
template <typename SrcXprType, typename InitialFunc>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType& dst, const SrcXprType& src,
const InitialFunc& /*func*/) {
call_assignment_no_alias(dst, src.lhs(), Func1());
call_assignment_no_alias(dst, src.rhs(), Func2());
}
};
#define EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(ASSIGN_OP, BINOP, ASSIGN_OP2) \
template <typename DstXprType, typename OtherXpr, typename Lhs, typename Rhs, typename DstScalar, \
typename SrcScalar, typename OtherScalar, typename ProdScalar> \
struct Assignment<DstXprType, \
CwiseBinaryOp<internal::BINOP<OtherScalar, ProdScalar>, const OtherXpr, \
const Product<Lhs, Rhs, DefaultProduct>>, \
internal::ASSIGN_OP<DstScalar, SrcScalar>, Dense2Dense> \
: assignment_from_xpr_op_product<DstXprType, OtherXpr, Product<Lhs, Rhs, DefaultProduct>, \
internal::ASSIGN_OP<DstScalar, OtherScalar>, \
internal::ASSIGN_OP2<DstScalar, ProdScalar>> {}
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_sum_op, add_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op, scalar_sum_op, add_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op, scalar_sum_op, sub_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_difference_op, sub_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op, scalar_difference_op, sub_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op, scalar_difference_op, add_assign_op);
//----------------------------------------
template <typename Lhs, typename Rhs>
struct generic_product_impl<Lhs, Rhs, DenseShape, DenseShape, InnerProduct> {
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) {
dst.coeffRef(0, 0) = (lhs.transpose().cwiseProduct(rhs)).sum();
}
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) {
dst.coeffRef(0, 0) += (lhs.transpose().cwiseProduct(rhs)).sum();
}
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) {
dst.coeffRef(0, 0) -= (lhs.transpose().cwiseProduct(rhs)).sum();
}
};
/***********************************************************************
* Implementation of outer dense * dense vector product
***********************************************************************/
// Column major result
template <typename Dst, typename Lhs, typename Rhs, typename Func>
void EIGEN_DEVICE_FUNC outer_product_selector_run(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Func& func,
const false_type&) {
evaluator<Rhs> rhsEval(rhs);
ei_declare_local_nested_eval(Lhs, lhs, Rhs::SizeAtCompileTime, actual_lhs);
// FIXME if cols is large enough, then it might be useful to make sure that lhs is sequentially stored
// FIXME not very good if rhs is real and lhs complex while alpha is real too
const Index cols = dst.cols();
for (Index j = 0; j < cols; ++j) func(dst.col(j), rhsEval.coeff(Index(0), j) * actual_lhs);
}
// Row major result
template <typename Dst, typename Lhs, typename Rhs, typename Func>
void EIGEN_DEVICE_FUNC outer_product_selector_run(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Func& func,
const true_type&) {
evaluator<Lhs> lhsEval(lhs);
ei_declare_local_nested_eval(Rhs, rhs, Lhs::SizeAtCompileTime, actual_rhs);
// FIXME if rows is large enough, then it might be useful to make sure that rhs is sequentially stored
// FIXME not very good if lhs is real and rhs complex while alpha is real too
const Index rows = dst.rows();
for (Index i = 0; i < rows; ++i) func(dst.row(i), lhsEval.coeff(i, Index(0)) * actual_rhs);
}
template <typename Lhs, typename Rhs>
struct generic_product_impl<Lhs, Rhs, DenseShape, DenseShape, OuterProduct> {
template <typename T>
struct is_row_major : std::conditional_t<(int(T::Flags) & RowMajorBit), internal::true_type, internal::false_type> {};
typedef typename Product<Lhs, Rhs>::Scalar Scalar;
// TODO it would be nice to be able to exploit our *_assign_op functors for that purpose
struct set {
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC void operator()(const Dst& dst, const Src& src) const {
dst.const_cast_derived() = src;
}
};
struct add {
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC void operator()(const Dst& dst, const Src& src) const {
dst.const_cast_derived() += src;
}
};
struct sub {
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC void operator()(const Dst& dst, const Src& src) const {
dst.const_cast_derived() -= src;
}
};
struct adds {
Scalar m_scale;
explicit adds(const Scalar& s) : m_scale(s) {}
template <typename Dst, typename Src>
void EIGEN_DEVICE_FUNC operator()(const Dst& dst, const Src& src) const {
dst.const_cast_derived() += m_scale * src;
}
};
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) {
internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major<Dst>());
}
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) {
internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major<Dst>());
}
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) {
internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major<Dst>());
}
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs,
const Scalar& alpha) {
internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major<Dst>());
}
};
// This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo
template <typename Lhs, typename Rhs, typename Derived>
struct generic_product_impl_base {
typedef typename Product<Lhs, Rhs>::Scalar Scalar;
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) {
dst.setZero();
scaleAndAddTo(dst, lhs, rhs, Scalar(1));
}
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) {
scaleAndAddTo(dst, lhs, rhs, Scalar(1));
}
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) {
scaleAndAddTo(dst, lhs, rhs, Scalar(-1));
}
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs,
const Scalar& alpha) {
Derived::scaleAndAddTo(dst, lhs, rhs, alpha);
}
};
template <typename Lhs, typename Rhs>
struct generic_product_impl<Lhs, Rhs, DenseShape, DenseShape, GemvProduct>
: generic_product_impl_base<Lhs, Rhs, generic_product_impl<Lhs, Rhs, DenseShape, DenseShape, GemvProduct>> {
typedef typename nested_eval<Lhs, 1>::type LhsNested;
typedef typename nested_eval<Rhs, 1>::type RhsNested;
typedef typename Product<Lhs, Rhs>::Scalar Scalar;
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
typedef internal::remove_all_t<std::conditional_t<int(Side) == OnTheRight, LhsNested, RhsNested>> MatrixType;
template <typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs,
const Scalar& alpha) {
// Fallback to inner product if both the lhs and rhs is a runtime vector.
if (lhs.rows() == 1 && rhs.cols() == 1) {
dst.coeffRef(0, 0) += alpha * lhs.row(0).conjugate().dot(rhs.col(0));
return;
}
LhsNested actual_lhs(lhs);
RhsNested actual_rhs(rhs);
internal::gemv_dense_selector<Side, (int(MatrixType::Flags) & RowMajorBit) ? RowMajor : ColMajor,
bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(actual_lhs,
actual_rhs, dst,
alpha);
}
};
template <typename Lhs, typename Rhs>
struct generic_product_impl<Lhs, Rhs, DenseShape, DenseShape, CoeffBasedProductMode> {
typedef typename Product<Lhs, Rhs>::Scalar Scalar;
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) {
// Same as: dst.noalias() = lhs.lazyProduct(rhs);
// but easier on the compiler side
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::assign_op<typename Dst::Scalar, Scalar>());
}
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) {
// dst.noalias() += lhs.lazyProduct(rhs);
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::add_assign_op<typename Dst::Scalar, Scalar>());
}
template <typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) {
// dst.noalias() -= lhs.lazyProduct(rhs);
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op<typename Dst::Scalar, Scalar>());
}
// This is a special evaluation path called from generic_product_impl<...,GemmProduct> in file GeneralMatrixMatrix.h
// This variant tries to extract scalar multiples from both the LHS and RHS and factor them out. For instance:
// dst {,+,-}= (s1*A)*(B*s2)
// will be rewritten as:
// dst {,+,-}= (s1*s2) * (A.lazyProduct(B))
// There are at least four benefits of doing so:
// 1 - huge performance gain for heap-allocated matrix types as it save costly allocations.
// 2 - it is faster than simply by-passing the heap allocation through stack allocation.
// 3 - it makes this fallback consistent with the heavy GEMM routine.
// 4 - it fully by-passes huge stack allocation attempts when multiplying huge fixed-size matrices.
// (see https://stackoverflow.com/questions/54738495)
// For small fixed sizes matrices, however, the gains are less obvious, it is sometimes x2 faster, but sometimes x3
// slower, and the behavior depends also a lot on the compiler... This is why this re-writing strategy is currently
// enabled only when falling back from the main GEMM.
template <typename Dst, typename Func>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void eval_dynamic(Dst& dst, const Lhs& lhs, const Rhs& rhs,
const Func& func) {
enum {
HasScalarFactor = blas_traits<Lhs>::HasScalarFactor || blas_traits<Rhs>::HasScalarFactor,
ConjLhs = blas_traits<Lhs>::NeedToConjugate,
ConjRhs = blas_traits<Rhs>::NeedToConjugate
};
// FIXME: in c++11 this should be auto, and extractScalarFactor should also return auto
// this is important for real*complex_mat
Scalar actualAlpha = combine_scalar_factors<Scalar>(lhs, rhs);
eval_dynamic_impl(dst, blas_traits<Lhs>::extract(lhs).template conjugateIf<ConjLhs>(),
blas_traits<Rhs>::extract(rhs).template conjugateIf<ConjRhs>(), func, actualAlpha,
std::conditional_t<HasScalarFactor, true_type, false_type>());
}
protected:
template <typename Dst, typename LhsT, typename RhsT, typename Func, typename Scalar>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void eval_dynamic_impl(Dst& dst, const LhsT& lhs, const RhsT& rhs,
const Func& func, const Scalar& s /* == 1 */,
false_type) {
EIGEN_UNUSED_VARIABLE(s);
eigen_internal_assert(numext::is_exactly_one(s));
call_restricted_packet_assignment_no_alias(dst, lhs.lazyProduct(rhs), func);
}
template <typename Dst, typename LhsT, typename RhsT, typename Func, typename Scalar>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void eval_dynamic_impl(Dst& dst, const LhsT& lhs, const RhsT& rhs,
const Func& func, const Scalar& s, true_type) {
call_restricted_packet_assignment_no_alias(dst, s * lhs.lazyProduct(rhs), func);
}
};
// This specialization enforces the use of a coefficient-based evaluation strategy
template <typename Lhs, typename Rhs>
struct generic_product_impl<Lhs, Rhs, DenseShape, DenseShape, LazyCoeffBasedProductMode>
: generic_product_impl<Lhs, Rhs, DenseShape, DenseShape, CoeffBasedProductMode> {};
// Case 2: Evaluate coeff by coeff
//
// This is mostly taken from CoeffBasedProduct.h
// The main difference is that we add an extra argument to the etor_product_*_impl::run() function
// for the inner dimension of the product, because evaluator object do not know their size.
template <int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl;
template <int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl;
template <typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape>
: evaluator_base<Product<Lhs, Rhs, LazyProduct>> {
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit product_evaluator(const XprType& xpr)
: m_lhs(xpr.lhs()),
m_rhs(xpr.rhs()),
m_lhsImpl(m_lhs), // FIXME the creation of the evaluator objects should result in a no-op, but check that!
m_rhsImpl(m_rhs), // Moreover, they are only useful for the packet path, so we could completely disable
// them when not needed, or perhaps declare them on the fly on the packet method... We
// have experiment to check what's best.
m_innerDim(xpr.lhs().cols()) {
EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::AddCost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
#if 0
std::cerr << "LhsOuterStrideBytes= " << LhsOuterStrideBytes << "\n";
std::cerr << "RhsOuterStrideBytes= " << RhsOuterStrideBytes << "\n";
std::cerr << "LhsAlignment= " << LhsAlignment << "\n";
std::cerr << "RhsAlignment= " << RhsAlignment << "\n";
std::cerr << "CanVectorizeLhs= " << CanVectorizeLhs << "\n";
std::cerr << "CanVectorizeRhs= " << CanVectorizeRhs << "\n";
std::cerr << "CanVectorizeInner= " << CanVectorizeInner << "\n";
std::cerr << "EvalToRowMajor= " << EvalToRowMajor << "\n";
std::cerr << "Alignment= " << Alignment << "\n";
std::cerr << "Flags= " << Flags << "\n";
#endif
}
// Everything below here is taken from CoeffBasedProduct.h
typedef typename internal::nested_eval<Lhs, Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename internal::nested_eval<Rhs, Lhs::RowsAtCompileTime>::type RhsNested;
typedef internal::remove_all_t<LhsNested> LhsNestedCleaned;
typedef internal::remove_all_t<RhsNested> RhsNestedCleaned;
typedef evaluator<LhsNestedCleaned> LhsEtorType;
typedef evaluator<RhsNestedCleaned> RhsEtorType;
enum {
RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime,
ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime,
InnerSize = min_size_prefer_fixed(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime,
MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime
};
typedef typename find_best_packet<Scalar, RowsAtCompileTime>::type LhsVecPacketType;
typedef typename find_best_packet<Scalar, ColsAtCompileTime>::type RhsVecPacketType;
enum {
LhsCoeffReadCost = LhsEtorType::CoeffReadCost,
RhsCoeffReadCost = RhsEtorType::CoeffReadCost,
CoeffReadCost = InnerSize == 0 ? NumTraits<Scalar>::ReadCost
: InnerSize == Dynamic
? HugeCost
: InnerSize * (NumTraits<Scalar>::MulCost + int(LhsCoeffReadCost) + int(RhsCoeffReadCost)) +
(InnerSize - 1) * NumTraits<Scalar>::AddCost,
Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
LhsFlags = LhsEtorType::Flags,
RhsFlags = RhsEtorType::Flags,
LhsRowMajor = LhsFlags & RowMajorBit,
RhsRowMajor = RhsFlags & RowMajorBit,
LhsVecPacketSize = unpacket_traits<LhsVecPacketType>::size,
RhsVecPacketSize = unpacket_traits<RhsVecPacketType>::size,
// Here, we don't care about alignment larger than the usable packet size.
LhsAlignment =
plain_enum_min(LhsEtorType::Alignment, LhsVecPacketSize* int(sizeof(typename LhsNestedCleaned::Scalar))),
RhsAlignment =
plain_enum_min(RhsEtorType::Alignment, RhsVecPacketSize* int(sizeof(typename RhsNestedCleaned::Scalar))),
SameType = is_same<typename LhsNestedCleaned::Scalar, typename RhsNestedCleaned::Scalar>::value,
CanVectorizeRhs = bool(RhsRowMajor) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime != 1),
CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime != 1),
EvalToRowMajor = (MaxRowsAtCompileTime == 1 && MaxColsAtCompileTime != 1) ? 1
: (MaxColsAtCompileTime == 1 && MaxRowsAtCompileTime != 1)
? 0
: (bool(RhsRowMajor) && !CanVectorizeLhs),
Flags = ((int(LhsFlags) | int(RhsFlags)) & HereditaryBits & ~RowMajorBit) |
(EvalToRowMajor ? RowMajorBit : 0)
// TODO enable vectorization for mixed types
| (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0) |
(XprType::IsVectorAtCompileTime ? LinearAccessBit : 0),
LhsOuterStrideBytes =
int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)),
RhsOuterStrideBytes =
int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)),
Alignment = bool(CanVectorizeLhs)
? (LhsOuterStrideBytes <= 0 || (int(LhsOuterStrideBytes) % plain_enum_max(1, LhsAlignment)) != 0
? 0
: LhsAlignment)
: bool(CanVectorizeRhs)
? (RhsOuterStrideBytes <= 0 || (int(RhsOuterStrideBytes) % plain_enum_max(1, RhsAlignment)) != 0
? 0
: RhsAlignment)
: 0,
/* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
* of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
* loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
* the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
*/
CanVectorizeInner = SameType && LhsRowMajor && (!RhsRowMajor) &&
(int(LhsFlags) & int(RhsFlags) & ActualPacketAccessBit) &&
(int(InnerSize) % packet_traits<Scalar>::size == 0)
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const {
return (m_lhs.row(row).transpose().cwiseProduct(m_rhs.col(col))).sum();
}
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
* which is why we don't set the LinearAccessBit.
* TODO: this seems possible when the result is a vector
*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index index) const {
const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime == 1) ? 0 : index;
const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime == 1) ? index : 0;
return (m_lhs.row(row).transpose().cwiseProduct(m_rhs.col(col))).sum();
}
template <int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packet(Index row, Index col) const {
PacketType res;
typedef etor_product_packet_impl<bool(int(Flags) & RowMajorBit) ? RowMajor : ColMajor,
Unroll ? int(InnerSize) : Dynamic, LhsEtorType, RhsEtorType, PacketType, LoadMode>
PacketImpl;
PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
return res;
}
template <int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packet(Index index) const {
const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime == 1) ? 0 : index;
const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime == 1) ? index : 0;
return packet<LoadMode, PacketType>(row, col);
}
protected:
add_const_on_value_type_t<LhsNested> m_lhs;
add_const_on_value_type_t<RhsNested> m_rhs;
LhsEtorType m_lhsImpl;
RhsEtorType m_rhsImpl;
// TODO: Get rid of m_innerDim if known at compile time
Index m_innerDim;
};
template <typename Lhs, typename Rhs>
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape>
: product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape> {
typedef Product<Lhs, Rhs, DefaultProduct> XprType;
typedef Product<Lhs, Rhs, LazyProduct> BaseProduct;
typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape> Base;
enum { Flags = Base::Flags | EvalBeforeNestingBit };
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit product_evaluator(const XprType& xpr)
: Base(BaseProduct(xpr.lhs(), xpr.rhs())) {}
};
/****************************************
*** Coeff based product, Packet path ***
****************************************/
template <int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs,
Index innerDim, Packet& res) {
etor_product_packet_impl<RowMajor, UnrollingIndex - 1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs,
innerDim, res);
res = pmadd(pset1<Packet>(lhs.coeff(row, Index(UnrollingIndex - 1))),
rhs.template packet<LoadMode, Packet>(Index(UnrollingIndex - 1), col), res);
}
};
template <int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs,
Index innerDim, Packet& res) {
etor_product_packet_impl<ColMajor, UnrollingIndex - 1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs,
innerDim, res);
res = pmadd(lhs.template packet<LoadMode, Packet>(row, Index(UnrollingIndex - 1)),
pset1<Packet>(rhs.coeff(Index(UnrollingIndex - 1), col)), res);
}
};
template <typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, 1, Lhs, Rhs, Packet, LoadMode> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs,
Index /*innerDim*/, Packet& res) {
res = pmul(pset1<Packet>(lhs.coeff(row, Index(0))), rhs.template packet<LoadMode, Packet>(Index(0), col));
}
};
template <typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, 1, Lhs, Rhs, Packet, LoadMode> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs,
Index /*innerDim*/, Packet& res) {
res = pmul(lhs.template packet<LoadMode, Packet>(row, Index(0)), pset1<Packet>(rhs.coeff(Index(0), col)));
}
};
template <typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/,
const Rhs& /*rhs*/, Index /*innerDim*/, Packet& res) {
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
}
};
template <typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/,
const Rhs& /*rhs*/, Index /*innerDim*/, Packet& res) {
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
}
};
template <typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs,
Index innerDim, Packet& res) {
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
for (Index i = 0; i < innerDim; ++i)
res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode, Packet>(i, col), res);
}
};
template <typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs,
Index innerDim, Packet& res) {
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
for (Index i = 0; i < innerDim; ++i)
res = pmadd(lhs.template packet<LoadMode, Packet>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
}
};
/***************************************************************************
* Triangular products
***************************************************************************/
template <int Mode, bool LhsIsTriangular, typename Lhs, bool LhsIsVector, typename Rhs, bool RhsIsVector>
struct triangular_product_impl;
template <typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs, Rhs, TriangularShape, DenseShape, ProductTag>
: generic_product_impl_base<Lhs, Rhs, generic_product_impl<Lhs, Rhs, TriangularShape, DenseShape, ProductTag>> {
typedef typename Product<Lhs, Rhs>::Scalar Scalar;
template <typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) {
triangular_product_impl<Lhs::Mode, true, typename Lhs::MatrixType, false, Rhs, Rhs::ColsAtCompileTime == 1>::run(
dst, lhs.nestedExpression(), rhs, alpha);
}
};
template <typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs, Rhs, DenseShape, TriangularShape, ProductTag>
: generic_product_impl_base<Lhs, Rhs, generic_product_impl<Lhs, Rhs, DenseShape, TriangularShape, ProductTag>> {
typedef typename Product<Lhs, Rhs>::Scalar Scalar;
template <typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) {
triangular_product_impl<Rhs::Mode, false, Lhs, Lhs::RowsAtCompileTime == 1, typename Rhs::MatrixType, false>::run(
dst, lhs, rhs.nestedExpression(), alpha);
}
};
/***************************************************************************
* SelfAdjoint products
***************************************************************************/
template <typename Lhs, int LhsMode, bool LhsIsVector, typename Rhs, int RhsMode, bool RhsIsVector>
struct selfadjoint_product_impl;
template <typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs, Rhs, SelfAdjointShape, DenseShape, ProductTag>
: generic_product_impl_base<Lhs, Rhs, generic_product_impl<Lhs, Rhs, SelfAdjointShape, DenseShape, ProductTag>> {
typedef typename Product<Lhs, Rhs>::Scalar Scalar;
template <typename Dest>
static EIGEN_DEVICE_FUNC void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) {
selfadjoint_product_impl<typename Lhs::MatrixType, Lhs::Mode, false, Rhs, 0, Rhs::IsVectorAtCompileTime>::run(
dst, lhs.nestedExpression(), rhs, alpha);
}
};
template <typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs, Rhs, DenseShape, SelfAdjointShape, ProductTag>
: generic_product_impl_base<Lhs, Rhs, generic_product_impl<Lhs, Rhs, DenseShape, SelfAdjointShape, ProductTag>> {
typedef typename Product<Lhs, Rhs>::Scalar Scalar;
template <typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) {
selfadjoint_product_impl<Lhs, 0, Lhs::IsVectorAtCompileTime, typename Rhs::MatrixType, Rhs::Mode, false>::run(
dst, lhs, rhs.nestedExpression(), alpha);
}
};
/***************************************************************************
* Diagonal products
***************************************************************************/
template <typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder>
struct diagonal_product_evaluator_base : evaluator_base<Derived> {
typedef typename ScalarBinaryOpTraits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
public:
enum {
CoeffReadCost = int(NumTraits<Scalar>::MulCost) + int(evaluator<MatrixType>::CoeffReadCost) +
int(evaluator<DiagonalType>::CoeffReadCost),
MatrixFlags = evaluator<MatrixType>::Flags,
DiagFlags = evaluator<DiagonalType>::Flags,
StorageOrder_ = (Derived::MaxRowsAtCompileTime == 1 && Derived::MaxColsAtCompileTime != 1) ? RowMajor
: (Derived::MaxColsAtCompileTime == 1 && Derived::MaxRowsAtCompileTime != 1) ? ColMajor
: MatrixFlags & RowMajorBit ? RowMajor
: ColMajor,
SameStorageOrder_ = StorageOrder_ == (MatrixFlags & RowMajorBit ? RowMajor : ColMajor),
ScalarAccessOnDiag_ = !((int(StorageOrder_) == ColMajor && int(ProductOrder) == OnTheLeft) ||
(int(StorageOrder_) == RowMajor && int(ProductOrder) == OnTheRight)),
SameTypes_ = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
// FIXME currently we need same types, but in the future the next rule should be the one
// Vectorizable_ = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (SameTypes_ &&
// bool(int(DiagFlags)&PacketAccessBit))),
Vectorizable_ = bool(int(MatrixFlags) & PacketAccessBit) && SameTypes_ &&
(SameStorageOrder_ || (MatrixFlags & LinearAccessBit) == LinearAccessBit) &&
(ScalarAccessOnDiag_ || (bool(int(DiagFlags) & PacketAccessBit))),
LinearAccessMask_ =
(MatrixType::RowsAtCompileTime == 1 || MatrixType::ColsAtCompileTime == 1) ? LinearAccessBit : 0,
Flags =
((HereditaryBits | LinearAccessMask_) & (unsigned int)(MatrixFlags)) | (Vectorizable_ ? PacketAccessBit : 0),
Alignment = evaluator<MatrixType>::Alignment,
AsScalarProduct =
(DiagonalType::SizeAtCompileTime == 1) ||
(DiagonalType::SizeAtCompileTime == Dynamic && MatrixType::RowsAtCompileTime == 1 &&
ProductOrder == OnTheLeft) ||
(DiagonalType::SizeAtCompileTime == Dynamic && MatrixType::ColsAtCompileTime == 1 && ProductOrder == OnTheRight)
};
EIGEN_DEVICE_FUNC diagonal_product_evaluator_base(const MatrixType& mat, const DiagonalType& diag)
: m_diagImpl(diag), m_matImpl(mat) {
EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const {
if (AsScalarProduct)
return m_diagImpl.coeff(0) * m_matImpl.coeff(idx);
else
return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
}
protected:
template <int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::true_type) const {
return internal::pmul(m_matImpl.template packet<LoadMode, PacketType>(row, col),
internal::pset1<PacketType>(m_diagImpl.coeff(id)));
}
template <int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::false_type) const {
enum {
InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
DiagonalPacketLoadMode = plain_enum_min(
LoadMode,
((InnerSize % 16) == 0) ? int(Aligned16) : int(evaluator<DiagonalType>::Alignment)) // FIXME hardcoded 16!!
};
return internal::pmul(m_matImpl.template packet<LoadMode, PacketType>(row, col),
m_diagImpl.template packet<DiagonalPacketLoadMode, PacketType>(id));
}
evaluator<DiagonalType> m_diagImpl;
evaluator<MatrixType> m_matImpl;
};
// diagonal * dense
template <typename Lhs, typename Rhs, int ProductKind, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape>
: diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>,
OnTheLeft> {
typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>,
OnTheLeft>
Base;
using Base::coeff;
using Base::m_diagImpl;
using Base::m_matImpl;
typedef typename Base::Scalar Scalar;
typedef Product<Lhs, Rhs, ProductKind> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef typename Lhs::DiagonalVectorType DiagonalType;
enum { StorageOrder = Base::StorageOrder_ };
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) : Base(xpr.rhs(), xpr.lhs().diagonal()) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const {
return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col);
}
#ifndef EIGEN_GPUCC
template <int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const {
// FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case.
// See also similar calls below.
return this->template packet_impl<LoadMode, PacketType>(
row, col, row, std::conditional_t<int(StorageOrder) == RowMajor, internal::true_type, internal::false_type>());
}
template <int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE PacketType packet(Index idx) const {
return packet<LoadMode, PacketType>(int(StorageOrder) == ColMajor ? idx : 0,
int(StorageOrder) == ColMajor ? 0 : idx);
}
#endif
};
// dense * diagonal
template <typename Lhs, typename Rhs, int ProductKind, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape>
: diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>,
OnTheRight> {
typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>,
OnTheRight>
Base;
using Base::coeff;
using Base::m_diagImpl;
using Base::m_matImpl;
typedef typename Base::Scalar Scalar;
typedef Product<Lhs, Rhs, ProductKind> XprType;
typedef typename XprType::PlainObject PlainObject;
enum { StorageOrder = Base::StorageOrder_ };
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs(), xpr.rhs().diagonal()) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const {
return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col);
}
#ifndef EIGEN_GPUCC
template <int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const {
return this->template packet_impl<LoadMode, PacketType>(
row, col, col, std::conditional_t<int(StorageOrder) == ColMajor, internal::true_type, internal::false_type>());
}
template <int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE PacketType packet(Index idx) const {
return packet<LoadMode, PacketType>(int(StorageOrder) == ColMajor ? idx : 0,
int(StorageOrder) == ColMajor ? 0 : idx);
}
#endif
};
/***************************************************************************
* Products with permutation matrices
***************************************************************************/
/** \internal
* \class permutation_matrix_product
* Internal helper class implementing the product between a permutation matrix and a matrix.
* This class is specialized for DenseShape below and for SparseShape in SparseCore/SparsePermutation.h
*/
template <typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
struct permutation_matrix_product;
template <typename ExpressionType, int Side, bool Transposed>
struct permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape> {
typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
typedef remove_all_t<MatrixType> MatrixTypeCleaned;
template <typename Dest, typename PermutationType>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Dest& dst, const PermutationType& perm,
const ExpressionType& xpr) {
MatrixType mat(xpr);
const Index n = Side == OnTheLeft ? mat.rows() : mat.cols();
// FIXME we need an is_same for expression that is not sensitive to constness. For instance
// is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
// if(is_same<MatrixTypeCleaned,Dest>::value && extract_data(dst) == extract_data(mat))
if (is_same_dense(dst, mat)) {
// apply the permutation inplace
Matrix<bool, PermutationType::RowsAtCompileTime, 1, 0, PermutationType::MaxRowsAtCompileTime> mask(perm.size());
mask.fill(false);
Index r = 0;
while (r < perm.size()) {
// search for the next seed
while (r < perm.size() && mask[r]) r++;
if (r >= perm.size()) break;
// we got one, let's follow it until we are back to the seed
Index k0 = r++;
Index kPrev = k0;
mask.coeffRef(k0) = true;
for (Index k = perm.indices().coeff(k0); k != k0; k = perm.indices().coeff(k)) {
Block<Dest, Side == OnTheLeft ? 1 : Dest::RowsAtCompileTime,
Side == OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
.swap(Block < Dest, Side == OnTheLeft ? 1 : Dest::RowsAtCompileTime,
Side == OnTheRight
? 1
: Dest::ColsAtCompileTime > (dst, ((Side == OnTheLeft) ^ Transposed) ? k0 : kPrev));
mask.coeffRef(k) = true;
kPrev = k;
}
}
} else {
for (Index i = 0; i < n; ++i) {
Block<Dest, Side == OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side == OnTheRight ? 1 : Dest::ColsAtCompileTime>(
dst, ((Side == OnTheLeft) ^ Transposed) ? perm.indices().coeff(i) : i)
=
Block < const MatrixTypeCleaned,
Side == OnTheLeft ? 1 : MatrixTypeCleaned::RowsAtCompileTime,
Side == OnTheRight ? 1
: MatrixTypeCleaned::ColsAtCompileTime >
(mat, ((Side == OnTheRight) ^ Transposed) ? perm.indices().coeff(i) : i);
}
}
}
};
template <typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, PermutationShape, MatrixShape, ProductTag> {
template <typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) {
permutation_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
}
};
template <typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, MatrixShape, PermutationShape, ProductTag> {
template <typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) {
permutation_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
}
};
template <typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Inverse<Lhs>, Rhs, PermutationShape, MatrixShape, ProductTag> {
template <typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Inverse<Lhs>& lhs, const Rhs& rhs) {
permutation_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
}
};
template <typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Inverse<Rhs>, MatrixShape, PermutationShape, ProductTag> {
template <typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Inverse<Rhs>& rhs) {
permutation_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
}
};
/***************************************************************************
* Products with transpositions matrices
***************************************************************************/
// FIXME could we unify Transpositions and Permutation into a single "shape"??
/** \internal
* \class transposition_matrix_product
* Internal helper class implementing the product between a permutation matrix and a matrix.
*/
template <typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
struct transposition_matrix_product {
typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
typedef remove_all_t<MatrixType> MatrixTypeCleaned;
template <typename Dest, typename TranspositionType>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Dest& dst, const TranspositionType& tr,
const ExpressionType& xpr) {
MatrixType mat(xpr);
typedef typename TranspositionType::StorageIndex StorageIndex;
const Index size = tr.size();
StorageIndex j = 0;
if (!is_same_dense(dst, mat)) dst = mat;
for (Index k = (Transposed ? size - 1 : 0); Transposed ? k >= 0 : k < size; Transposed ? --k : ++k)
if (Index(j = tr.coeff(k)) != k) {
if (Side == OnTheLeft)
dst.row(k).swap(dst.row(j));
else if (Side == OnTheRight)
dst.col(k).swap(dst.col(j));
}
}
};
template <typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, TranspositionsShape, MatrixShape, ProductTag> {
template <typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) {
transposition_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
}
};
template <typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, MatrixShape, TranspositionsShape, ProductTag> {
template <typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) {
transposition_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
}
};
template <typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Transpose<Lhs>, Rhs, TranspositionsShape, MatrixShape, ProductTag> {
template <typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs) {
transposition_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
}
};
template <typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Transpose<Rhs>, MatrixShape, TranspositionsShape, ProductTag> {
template <typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs) {
transposition_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
}
};
/***************************************************************************
* skew symmetric products
* for now we just call the generic implementation
***************************************************************************/
template <typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, SkewSymmetricShape, MatrixShape, ProductTag> {
template <typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) {
generic_product_impl<typename Lhs::DenseMatrixType, Rhs, DenseShape, MatrixShape, ProductTag>::evalTo(dst, lhs,
rhs);
}
};
template <typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, MatrixShape, SkewSymmetricShape, ProductTag> {
template <typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) {
generic_product_impl<Lhs, typename Rhs::DenseMatrixType, MatrixShape, DenseShape, ProductTag>::evalTo(dst, lhs,
rhs);
}
};
template <typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs, Rhs, SkewSymmetricShape, SkewSymmetricShape, ProductTag> {
template <typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) {
generic_product_impl<typename Lhs::DenseMatrixType, typename Rhs::DenseMatrixType, DenseShape, DenseShape,
ProductTag>::evalTo(dst, lhs, rhs);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PRODUCT_EVALUATORS_H