blob: 3b5e470ce4275277c848fcd5824a1dead4c18587 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_RETURNBYVALUE_H
#define EIGEN_RETURNBYVALUE_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename Derived>
struct traits<ReturnByValue<Derived> > : public traits<typename traits<Derived>::ReturnType> {
enum {
// We're disabling the DirectAccess because e.g. the constructor of
// the Block-with-DirectAccess expression requires to have a coeffRef method.
// Also, we don't want to have to implement the stride stuff.
Flags = (traits<typename traits<Derived>::ReturnType>::Flags | EvalBeforeNestingBit) & ~DirectAccessBit
};
};
/* The ReturnByValue object doesn't even have a coeff() method.
* So the only way that nesting it in an expression can work, is by evaluating it into a plain matrix.
* So internal::nested always gives the plain return matrix type.
*
* FIXME: I don't understand why we need this specialization: isn't this taken care of by the EvalBeforeNestingBit ??
* Answer: EvalBeforeNestingBit should be deprecated since we have the evaluators
*/
template <typename Derived, int n, typename PlainObject>
struct nested_eval<ReturnByValue<Derived>, n, PlainObject> {
typedef typename traits<Derived>::ReturnType type;
};
} // end namespace internal
/** \class ReturnByValue
* \ingroup Core_Module
*
*/
template <typename Derived>
class ReturnByValue : public internal::dense_xpr_base<ReturnByValue<Derived> >::type, internal::no_assignment_operator {
public:
typedef typename internal::traits<Derived>::ReturnType ReturnType;
typedef typename internal::dense_xpr_base<ReturnByValue>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ReturnByValue)
template <typename Dest>
EIGEN_DEVICE_FUNC inline void evalTo(Dest& dst) const {
static_cast<const Derived*>(this)->evalTo(dst);
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT {
return static_cast<const Derived*>(this)->rows();
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT {
return static_cast<const Derived*>(this)->cols();
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
#define Unusable \
YOU_ARE_TRYING_TO_ACCESS_A_SINGLE_COEFFICIENT_IN_A_SPECIAL_EXPRESSION_WHERE_THAT_IS_NOT_ALLOWED_BECAUSE_THAT_WOULD_BE_INEFFICIENT
class Unusable {
Unusable(const Unusable&) {}
Unusable& operator=(const Unusable&) { return *this; }
};
const Unusable& coeff(Index) const { return *reinterpret_cast<const Unusable*>(this); }
const Unusable& coeff(Index, Index) const { return *reinterpret_cast<const Unusable*>(this); }
Unusable& coeffRef(Index) { return *reinterpret_cast<Unusable*>(this); }
Unusable& coeffRef(Index, Index) { return *reinterpret_cast<Unusable*>(this); }
#undef Unusable
#endif
};
template <typename Derived>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC Derived& DenseBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other) {
other.evalTo(derived());
return derived();
}
namespace internal {
// Expression is evaluated in a temporary; default implementation of Assignment is bypassed so that
// when a ReturnByValue expression is assigned, the evaluator is not constructed.
// TODO: Finalize port to new regime; ReturnByValue should not exist in the expression world
template <typename Derived>
struct evaluator<ReturnByValue<Derived> > : public evaluator<typename internal::traits<Derived>::ReturnType> {
typedef ReturnByValue<Derived> XprType;
typedef typename internal::traits<Derived>::ReturnType PlainObject;
typedef evaluator<PlainObject> Base;
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : m_result(xpr.rows(), xpr.cols()) {
internal::construct_at<Base>(this, m_result);
xpr.evalTo(m_result);
}
protected:
PlainObject m_result;
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_RETURNBYVALUE_H