blob: c541909a320a5d3c9563657161e03cef342a88b7 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TRIANGULAR_MATRIX_MATRIX_H
#define EIGEN_TRIANGULAR_MATRIX_MATRIX_H
// IWYU pragma: private
#include "../InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
// template<typename Scalar, int mr, int StorageOrder, bool Conjugate, int Mode>
// struct gemm_pack_lhs_triangular
// {
// Matrix<Scalar,mr,mr,
// void operator()(Scalar* blockA, const EIGEN_RESTRICT Scalar* lhs_, int lhsStride, int depth, int rows)
// {
// conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
// const_blas_data_mapper<Scalar, StorageOrder> lhs(lhs_,lhsStride);
// int count = 0;
// const int peeled_mc = (rows/mr)*mr;
// for(int i=0; i<peeled_mc; i+=mr)
// {
// for(int k=0; k<depth; k++)
// for(int w=0; w<mr; w++)
// blockA[count++] = cj(lhs(i+w, k));
// }
// for(int i=peeled_mc; i<rows; i++)
// {
// for(int k=0; k<depth; k++)
// blockA[count++] = cj(lhs(i, k));
// }
// }
// };
/* Optimized triangular matrix * matrix (_TRMM++) product built on top of
* the general matrix matrix product.
*/
template <typename Scalar, typename Index, int Mode, bool LhsIsTriangular, int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs, int ResStorageOrder, int ResInnerStride, int Version = Specialized>
struct product_triangular_matrix_matrix;
template <typename Scalar, typename Index, int Mode, bool LhsIsTriangular, int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs, int ResInnerStride, int Version>
struct product_triangular_matrix_matrix<Scalar, Index, Mode, LhsIsTriangular, LhsStorageOrder, ConjugateLhs,
RhsStorageOrder, ConjugateRhs, RowMajor, ResInnerStride, Version> {
static EIGEN_STRONG_INLINE void run(Index rows, Index cols, Index depth, const Scalar* lhs, Index lhsStride,
const Scalar* rhs, Index rhsStride, Scalar* res, Index resIncr, Index resStride,
const Scalar& alpha, level3_blocking<Scalar, Scalar>& blocking) {
product_triangular_matrix_matrix<Scalar, Index, (Mode & (UnitDiag | ZeroDiag)) | ((Mode & Upper) ? Lower : Upper),
(!LhsIsTriangular), RhsStorageOrder == RowMajor ? ColMajor : RowMajor,
ConjugateRhs, LhsStorageOrder == RowMajor ? ColMajor : RowMajor, ConjugateLhs,
ColMajor, ResInnerStride>::run(cols, rows, depth, rhs, rhsStride, lhs, lhsStride,
res, resIncr, resStride, alpha, blocking);
}
};
// implements col-major += alpha * op(triangular) * op(general)
template <typename Scalar, typename Index, int Mode, int LhsStorageOrder, bool ConjugateLhs, int RhsStorageOrder,
bool ConjugateRhs, int ResInnerStride, int Version>
struct product_triangular_matrix_matrix<Scalar, Index, Mode, true, LhsStorageOrder, ConjugateLhs, RhsStorageOrder,
ConjugateRhs, ColMajor, ResInnerStride, Version> {
typedef gebp_traits<Scalar, Scalar> Traits;
enum {
SmallPanelWidth = 2 * plain_enum_max(Traits::mr, Traits::nr),
IsLower = (Mode & Lower) == Lower,
SetDiag = (Mode & (ZeroDiag | UnitDiag)) ? 0 : 1
};
static EIGEN_DONT_INLINE void run(Index _rows, Index _cols, Index _depth, const Scalar* lhs_, Index lhsStride,
const Scalar* rhs_, Index rhsStride, Scalar* res, Index resIncr, Index resStride,
const Scalar& alpha, level3_blocking<Scalar, Scalar>& blocking);
};
template <typename Scalar, typename Index, int Mode, int LhsStorageOrder, bool ConjugateLhs, int RhsStorageOrder,
bool ConjugateRhs, int ResInnerStride, int Version>
EIGEN_DONT_INLINE void product_triangular_matrix_matrix<
Scalar, Index, Mode, true, LhsStorageOrder, ConjugateLhs, RhsStorageOrder, ConjugateRhs, ColMajor, ResInnerStride,
Version>::run(Index _rows, Index _cols, Index _depth, const Scalar* lhs_, Index lhsStride, const Scalar* rhs_,
Index rhsStride, Scalar* res_, Index resIncr, Index resStride, const Scalar& alpha,
level3_blocking<Scalar, Scalar>& blocking) {
// strip zeros
Index diagSize = (std::min)(_rows, _depth);
Index rows = IsLower ? _rows : diagSize;
Index depth = IsLower ? diagSize : _depth;
Index cols = _cols;
typedef const_blas_data_mapper<Scalar, Index, LhsStorageOrder> LhsMapper;
typedef const_blas_data_mapper<Scalar, Index, RhsStorageOrder> RhsMapper;
typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor, Unaligned, ResInnerStride> ResMapper;
LhsMapper lhs(lhs_, lhsStride);
RhsMapper rhs(rhs_, rhsStride);
ResMapper res(res_, resStride, resIncr);
Index kc = blocking.kc(); // cache block size along the K direction
Index mc = (std::min)(rows, blocking.mc()); // cache block size along the M direction
// The small panel size must not be larger than blocking size.
// Usually this should never be the case because SmallPanelWidth^2 is very small
// compared to L2 cache size, but let's be safe:
Index panelWidth = (std::min)(Index(SmallPanelWidth), (std::min)(kc, mc));
std::size_t sizeA = kc * mc;
std::size_t sizeB = kc * cols;
ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
// To work around an "error: member reference base type 'Matrix<...>
// (Eigen::internal::constructor_without_unaligned_array_assert (*)())' is
// not a structure or union" compilation error in nvcc (tested V8.0.61),
// create a dummy internal::constructor_without_unaligned_array_assert
// object to pass to the Matrix constructor.
internal::constructor_without_unaligned_array_assert a;
Matrix<Scalar, SmallPanelWidth, SmallPanelWidth, LhsStorageOrder> triangularBuffer(a);
triangularBuffer.setZero();
if ((Mode & ZeroDiag) == ZeroDiag)
triangularBuffer.diagonal().setZero();
else
triangularBuffer.diagonal().setOnes();
gebp_kernel<Scalar, Scalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
gemm_pack_lhs<Scalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing,
LhsStorageOrder>
pack_lhs;
gemm_pack_rhs<Scalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs;
for (Index k2 = IsLower ? depth : 0; IsLower ? k2 > 0 : k2 < depth; IsLower ? k2 -= kc : k2 += kc) {
Index actual_kc = (std::min)(IsLower ? k2 : depth - k2, kc);
Index actual_k2 = IsLower ? k2 - actual_kc : k2;
// align blocks with the end of the triangular part for trapezoidal lhs
if ((!IsLower) && (k2 < rows) && (k2 + actual_kc > rows)) {
actual_kc = rows - k2;
k2 = k2 + actual_kc - kc;
}
pack_rhs(blockB, rhs.getSubMapper(actual_k2, 0), actual_kc, cols);
// the selected lhs's panel has to be split in three different parts:
// 1 - the part which is zero => skip it
// 2 - the diagonal block => special kernel
// 3 - the dense panel below (lower case) or above (upper case) the diagonal block => GEPP
// the block diagonal, if any:
if (IsLower || actual_k2 < rows) {
// for each small vertical panels of lhs
for (Index k1 = 0; k1 < actual_kc; k1 += panelWidth) {
Index actualPanelWidth = std::min<Index>(actual_kc - k1, panelWidth);
Index lengthTarget = IsLower ? actual_kc - k1 - actualPanelWidth : k1;
Index startBlock = actual_k2 + k1;
Index blockBOffset = k1;
// => GEBP with the micro triangular block
// The trick is to pack this micro block while filling the opposite triangular part with zeros.
// To this end we do an extra triangular copy to a small temporary buffer
for (Index k = 0; k < actualPanelWidth; ++k) {
if (SetDiag) triangularBuffer.coeffRef(k, k) = lhs(startBlock + k, startBlock + k);
for (Index i = IsLower ? k + 1 : 0; IsLower ? i < actualPanelWidth : i < k; ++i)
triangularBuffer.coeffRef(i, k) = lhs(startBlock + i, startBlock + k);
}
pack_lhs(blockA, LhsMapper(triangularBuffer.data(), triangularBuffer.outerStride()), actualPanelWidth,
actualPanelWidth);
gebp_kernel(res.getSubMapper(startBlock, 0), blockA, blockB, actualPanelWidth, actualPanelWidth, cols, alpha,
actualPanelWidth, actual_kc, 0, blockBOffset);
// GEBP with remaining micro panel
if (lengthTarget > 0) {
Index startTarget = IsLower ? actual_k2 + k1 + actualPanelWidth : actual_k2;
pack_lhs(blockA, lhs.getSubMapper(startTarget, startBlock), actualPanelWidth, lengthTarget);
gebp_kernel(res.getSubMapper(startTarget, 0), blockA, blockB, lengthTarget, actualPanelWidth, cols, alpha,
actualPanelWidth, actual_kc, 0, blockBOffset);
}
}
}
// the part below (lower case) or above (upper case) the diagonal => GEPP
{
Index start = IsLower ? k2 : 0;
Index end = IsLower ? rows : (std::min)(actual_k2, rows);
for (Index i2 = start; i2 < end; i2 += mc) {
const Index actual_mc = (std::min)(i2 + mc, end) - i2;
gemm_pack_lhs<Scalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing,
LhsStorageOrder, false>()(blockA, lhs.getSubMapper(i2, actual_k2), actual_kc, actual_mc);
gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0);
}
}
}
}
// implements col-major += alpha * op(general) * op(triangular)
template <typename Scalar, typename Index, int Mode, int LhsStorageOrder, bool ConjugateLhs, int RhsStorageOrder,
bool ConjugateRhs, int ResInnerStride, int Version>
struct product_triangular_matrix_matrix<Scalar, Index, Mode, false, LhsStorageOrder, ConjugateLhs, RhsStorageOrder,
ConjugateRhs, ColMajor, ResInnerStride, Version> {
typedef gebp_traits<Scalar, Scalar> Traits;
enum {
SmallPanelWidth = plain_enum_max(Traits::mr, Traits::nr),
IsLower = (Mode & Lower) == Lower,
SetDiag = (Mode & (ZeroDiag | UnitDiag)) ? 0 : 1
};
static EIGEN_DONT_INLINE void run(Index _rows, Index _cols, Index _depth, const Scalar* lhs_, Index lhsStride,
const Scalar* rhs_, Index rhsStride, Scalar* res, Index resIncr, Index resStride,
const Scalar& alpha, level3_blocking<Scalar, Scalar>& blocking);
};
template <typename Scalar, typename Index, int Mode, int LhsStorageOrder, bool ConjugateLhs, int RhsStorageOrder,
bool ConjugateRhs, int ResInnerStride, int Version>
EIGEN_DONT_INLINE void product_triangular_matrix_matrix<
Scalar, Index, Mode, false, LhsStorageOrder, ConjugateLhs, RhsStorageOrder, ConjugateRhs, ColMajor, ResInnerStride,
Version>::run(Index _rows, Index _cols, Index _depth, const Scalar* lhs_, Index lhsStride, const Scalar* rhs_,
Index rhsStride, Scalar* res_, Index resIncr, Index resStride, const Scalar& alpha,
level3_blocking<Scalar, Scalar>& blocking) {
const Index PacketBytes = packet_traits<Scalar>::size * sizeof(Scalar);
// strip zeros
Index diagSize = (std::min)(_cols, _depth);
Index rows = _rows;
Index depth = IsLower ? _depth : diagSize;
Index cols = IsLower ? diagSize : _cols;
typedef const_blas_data_mapper<Scalar, Index, LhsStorageOrder> LhsMapper;
typedef const_blas_data_mapper<Scalar, Index, RhsStorageOrder> RhsMapper;
typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor, Unaligned, ResInnerStride> ResMapper;
LhsMapper lhs(lhs_, lhsStride);
RhsMapper rhs(rhs_, rhsStride);
ResMapper res(res_, resStride, resIncr);
Index kc = blocking.kc(); // cache block size along the K direction
Index mc = (std::min)(rows, blocking.mc()); // cache block size along the M direction
std::size_t sizeA = kc * mc;
std::size_t sizeB = kc * cols + EIGEN_MAX_ALIGN_BYTES / sizeof(Scalar);
ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
internal::constructor_without_unaligned_array_assert a;
Matrix<Scalar, SmallPanelWidth, SmallPanelWidth, RhsStorageOrder> triangularBuffer(a);
triangularBuffer.setZero();
if ((Mode & ZeroDiag) == ZeroDiag)
triangularBuffer.diagonal().setZero();
else
triangularBuffer.diagonal().setOnes();
gebp_kernel<Scalar, Scalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
gemm_pack_lhs<Scalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing,
LhsStorageOrder>
pack_lhs;
gemm_pack_rhs<Scalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs;
gemm_pack_rhs<Scalar, Index, RhsMapper, Traits::nr, RhsStorageOrder, false, true> pack_rhs_panel;
for (Index k2 = IsLower ? 0 : depth; IsLower ? k2 < depth : k2 > 0; IsLower ? k2 += kc : k2 -= kc) {
Index actual_kc = (std::min)(IsLower ? depth - k2 : k2, kc);
Index actual_k2 = IsLower ? k2 : k2 - actual_kc;
// align blocks with the end of the triangular part for trapezoidal rhs
if (IsLower && (k2 < cols) && (actual_k2 + actual_kc > cols)) {
actual_kc = cols - k2;
k2 = actual_k2 + actual_kc - kc;
}
// remaining size
Index rs = IsLower ? (std::min)(cols, actual_k2) : cols - k2;
// size of the triangular part
Index ts = (IsLower && actual_k2 >= cols) ? 0 : actual_kc;
Scalar* geb = blockB + ts * ts;
geb = geb + internal::first_aligned<PacketBytes>(geb, PacketBytes / sizeof(Scalar));
pack_rhs(geb, rhs.getSubMapper(actual_k2, IsLower ? 0 : k2), actual_kc, rs);
// pack the triangular part of the rhs padding the unrolled blocks with zeros
if (ts > 0) {
for (Index j2 = 0; j2 < actual_kc; j2 += SmallPanelWidth) {
Index actualPanelWidth = std::min<Index>(actual_kc - j2, SmallPanelWidth);
Index actual_j2 = actual_k2 + j2;
Index panelOffset = IsLower ? j2 + actualPanelWidth : 0;
Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2;
// general part
pack_rhs_panel(blockB + j2 * actual_kc, rhs.getSubMapper(actual_k2 + panelOffset, actual_j2), panelLength,
actualPanelWidth, actual_kc, panelOffset);
// append the triangular part via a temporary buffer
for (Index j = 0; j < actualPanelWidth; ++j) {
if (SetDiag) triangularBuffer.coeffRef(j, j) = rhs(actual_j2 + j, actual_j2 + j);
for (Index k = IsLower ? j + 1 : 0; IsLower ? k < actualPanelWidth : k < j; ++k)
triangularBuffer.coeffRef(k, j) = rhs(actual_j2 + k, actual_j2 + j);
}
pack_rhs_panel(blockB + j2 * actual_kc, RhsMapper(triangularBuffer.data(), triangularBuffer.outerStride()),
actualPanelWidth, actualPanelWidth, actual_kc, j2);
}
}
for (Index i2 = 0; i2 < rows; i2 += mc) {
const Index actual_mc = (std::min)(mc, rows - i2);
pack_lhs(blockA, lhs.getSubMapper(i2, actual_k2), actual_kc, actual_mc);
// triangular kernel
if (ts > 0) {
for (Index j2 = 0; j2 < actual_kc; j2 += SmallPanelWidth) {
Index actualPanelWidth = std::min<Index>(actual_kc - j2, SmallPanelWidth);
Index panelLength = IsLower ? actual_kc - j2 : j2 + actualPanelWidth;
Index blockOffset = IsLower ? j2 : 0;
gebp_kernel(res.getSubMapper(i2, actual_k2 + j2), blockA, blockB + j2 * actual_kc, actual_mc, panelLength,
actualPanelWidth, alpha, actual_kc, actual_kc, // strides
blockOffset, blockOffset); // offsets
}
}
gebp_kernel(res.getSubMapper(i2, IsLower ? 0 : k2), blockA, geb, actual_mc, actual_kc, rs, alpha, -1, -1, 0, 0);
}
}
}
/***************************************************************************
* Wrapper to product_triangular_matrix_matrix
***************************************************************************/
} // end namespace internal
namespace internal {
template <int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
struct triangular_product_impl<Mode, LhsIsTriangular, Lhs, false, Rhs, false> {
template <typename Dest>
static void run(Dest& dst, const Lhs& a_lhs, const Rhs& a_rhs, const typename Dest::Scalar& alpha) {
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef typename Dest::Scalar Scalar;
typedef internal::blas_traits<Lhs> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef internal::remove_all_t<ActualLhsType> ActualLhsTypeCleaned;
typedef internal::blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef internal::remove_all_t<ActualRhsType> ActualRhsTypeCleaned;
internal::add_const_on_value_type_t<ActualLhsType> lhs = LhsBlasTraits::extract(a_lhs);
internal::add_const_on_value_type_t<ActualRhsType> rhs = RhsBlasTraits::extract(a_rhs);
// Empty product, return early. Otherwise, we get `nullptr` use errors below when we try to access
// coeffRef(0,0).
if (lhs.size() == 0 || rhs.size() == 0) {
return;
}
LhsScalar lhs_alpha = LhsBlasTraits::extractScalarFactor(a_lhs);
RhsScalar rhs_alpha = RhsBlasTraits::extractScalarFactor(a_rhs);
Scalar actualAlpha = alpha * lhs_alpha * rhs_alpha;
typedef internal::gemm_blocking_space<(Dest::Flags & RowMajorBit) ? RowMajor : ColMajor, Scalar, Scalar,
Lhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime,
Lhs::MaxColsAtCompileTime, 4>
BlockingType;
enum { IsLower = (Mode & Lower) == Lower };
Index stripedRows = ((!LhsIsTriangular) || (IsLower)) ? lhs.rows() : (std::min)(lhs.rows(), lhs.cols());
Index stripedCols = ((LhsIsTriangular) || (!IsLower)) ? rhs.cols() : (std::min)(rhs.cols(), rhs.rows());
Index stripedDepth = LhsIsTriangular ? ((!IsLower) ? lhs.cols() : (std::min)(lhs.cols(), lhs.rows()))
: ((IsLower) ? rhs.rows() : (std::min)(rhs.rows(), rhs.cols()));
BlockingType blocking(stripedRows, stripedCols, stripedDepth, 1, false);
internal::product_triangular_matrix_matrix<
Scalar, Index, Mode, LhsIsTriangular,
(internal::traits<ActualLhsTypeCleaned>::Flags & RowMajorBit) ? RowMajor : ColMajor,
LhsBlasTraits::NeedToConjugate,
(internal::traits<ActualRhsTypeCleaned>::Flags & RowMajorBit) ? RowMajor : ColMajor,
RhsBlasTraits::NeedToConjugate, (internal::traits<Dest>::Flags & RowMajorBit) ? RowMajor : ColMajor,
Dest::InnerStrideAtCompileTime>::run(stripedRows, stripedCols, stripedDepth, // sizes
&lhs.coeffRef(0, 0), lhs.outerStride(), // lhs info
&rhs.coeffRef(0, 0), rhs.outerStride(), // rhs info
&dst.coeffRef(0, 0), dst.innerStride(), dst.outerStride(), // result info
actualAlpha, blocking);
// Apply correction if the diagonal is unit and a scalar factor was nested:
if ((Mode & UnitDiag) == UnitDiag) {
if (LhsIsTriangular && !numext::is_exactly_one(lhs_alpha)) {
Index diagSize = (std::min)(lhs.rows(), lhs.cols());
dst.topRows(diagSize) -= ((lhs_alpha - LhsScalar(1)) * a_rhs).topRows(diagSize);
} else if ((!LhsIsTriangular) && !numext::is_exactly_one(rhs_alpha)) {
Index diagSize = (std::min)(rhs.rows(), rhs.cols());
dst.leftCols(diagSize) -= (rhs_alpha - RhsScalar(1)) * a_lhs.leftCols(diagSize);
}
}
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_H