| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_TRIANGULAR_SOLVER_VECTOR_H |
| #define EIGEN_TRIANGULAR_SOLVER_VECTOR_H |
| |
| // IWYU pragma: private |
| #include "../InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate, int StorageOrder> |
| struct triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheRight, Mode, Conjugate, StorageOrder> { |
| static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs) { |
| triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, |
| ((Mode & Upper) == Upper ? Lower : Upper) | (Mode & UnitDiag), Conjugate, |
| StorageOrder == RowMajor ? ColMajor : RowMajor>::run(size, _lhs, lhsStride, rhs); |
| } |
| }; |
| |
| // forward and backward substitution, row-major, rhs is a vector |
| template <typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate> |
| struct triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, Mode, Conjugate, RowMajor> { |
| enum { IsLower = ((Mode & Lower) == Lower) }; |
| static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs) { |
| typedef Map<const Matrix<LhsScalar, Dynamic, Dynamic, RowMajor>, 0, OuterStride<> > LhsMap; |
| const LhsMap lhs(_lhs, size, size, OuterStride<>(lhsStride)); |
| |
| typedef const_blas_data_mapper<LhsScalar, Index, RowMajor> LhsMapper; |
| typedef const_blas_data_mapper<RhsScalar, Index, ColMajor> RhsMapper; |
| |
| std::conditional_t<Conjugate, const CwiseUnaryOp<typename internal::scalar_conjugate_op<LhsScalar>, LhsMap>, |
| const LhsMap&> |
| cjLhs(lhs); |
| static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH; |
| for (Index pi = IsLower ? 0 : size; IsLower ? pi < size : pi > 0; IsLower ? pi += PanelWidth : pi -= PanelWidth) { |
| Index actualPanelWidth = (std::min)(IsLower ? size - pi : pi, PanelWidth); |
| |
| Index r = IsLower ? pi : size - pi; // remaining size |
| if (r > 0) { |
| // let's directly call the low level product function because: |
| // 1 - it is faster to compile |
| // 2 - it is slightly faster at runtime |
| Index startRow = IsLower ? pi : pi - actualPanelWidth; |
| Index startCol = IsLower ? 0 : pi; |
| |
| general_matrix_vector_product<Index, LhsScalar, LhsMapper, RowMajor, Conjugate, RhsScalar, RhsMapper, |
| false>::run(actualPanelWidth, r, |
| LhsMapper(&lhs.coeffRef(startRow, startCol), lhsStride), |
| RhsMapper(rhs + startCol, 1), rhs + startRow, 1, RhsScalar(-1)); |
| } |
| |
| for (Index k = 0; k < actualPanelWidth; ++k) { |
| Index i = IsLower ? pi + k : pi - k - 1; |
| Index s = IsLower ? pi : i + 1; |
| if (k > 0) |
| rhs[i] -= (cjLhs.row(i).segment(s, k).transpose().cwiseProduct( |
| Map<const Matrix<RhsScalar, Dynamic, 1> >(rhs + s, k))) |
| .sum(); |
| |
| if ((!(Mode & UnitDiag)) && !is_identically_zero(rhs[i])) rhs[i] /= cjLhs(i, i); |
| } |
| } |
| } |
| }; |
| |
| // forward and backward substitution, column-major, rhs is a vector |
| template <typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate> |
| struct triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, Mode, Conjugate, ColMajor> { |
| enum { IsLower = ((Mode & Lower) == Lower) }; |
| static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs) { |
| typedef Map<const Matrix<LhsScalar, Dynamic, Dynamic, ColMajor>, 0, OuterStride<> > LhsMap; |
| const LhsMap lhs(_lhs, size, size, OuterStride<>(lhsStride)); |
| typedef const_blas_data_mapper<LhsScalar, Index, ColMajor> LhsMapper; |
| typedef const_blas_data_mapper<RhsScalar, Index, ColMajor> RhsMapper; |
| std::conditional_t<Conjugate, const CwiseUnaryOp<typename internal::scalar_conjugate_op<LhsScalar>, LhsMap>, |
| const LhsMap&> |
| cjLhs(lhs); |
| static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH; |
| |
| for (Index pi = IsLower ? 0 : size; IsLower ? pi < size : pi > 0; IsLower ? pi += PanelWidth : pi -= PanelWidth) { |
| Index actualPanelWidth = (std::min)(IsLower ? size - pi : pi, PanelWidth); |
| Index startBlock = IsLower ? pi : pi - actualPanelWidth; |
| Index endBlock = IsLower ? pi + actualPanelWidth : 0; |
| |
| for (Index k = 0; k < actualPanelWidth; ++k) { |
| Index i = IsLower ? pi + k : pi - k - 1; |
| if (!is_identically_zero(rhs[i])) { |
| if (!(Mode & UnitDiag)) rhs[i] /= cjLhs.coeff(i, i); |
| |
| Index r = actualPanelWidth - k - 1; // remaining size |
| Index s = IsLower ? i + 1 : i - r; |
| if (r > 0) Map<Matrix<RhsScalar, Dynamic, 1> >(rhs + s, r) -= rhs[i] * cjLhs.col(i).segment(s, r); |
| } |
| } |
| Index r = IsLower ? size - endBlock : startBlock; // remaining size |
| if (r > 0) { |
| // let's directly call the low level product function because: |
| // 1 - it is faster to compile |
| // 2 - it is slightly faster at runtime |
| general_matrix_vector_product<Index, LhsScalar, LhsMapper, ColMajor, Conjugate, RhsScalar, RhsMapper, |
| false>::run(r, actualPanelWidth, |
| LhsMapper(&lhs.coeffRef(endBlock, startBlock), lhsStride), |
| RhsMapper(rhs + startBlock, 1), rhs + endBlock, 1, RhsScalar(-1)); |
| } |
| } |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_TRIANGULAR_SOLVER_VECTOR_H |