blob: 2f2ba9b20287d28ce6c720519be25be33afbb582 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FORWARDDECLARATIONS_H
#define EIGEN_FORWARDDECLARATIONS_H
// IWYU pragma: private
#include "../InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename T>
struct traits;
// here we say once and for all that traits<const T> == traits<T>
// When constness must affect traits, it has to be constness on template parameters on which T itself depends.
// For example, traits<Map<const T> > != traits<Map<T> >, but
// traits<const Map<T> > == traits<Map<T> >
template <typename T>
struct traits<const T> : traits<T> {};
template <typename Derived>
struct has_direct_access {
enum { ret = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0 };
};
template <typename Derived>
struct accessors_level {
enum {
has_direct_access = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0,
has_write_access = (traits<Derived>::Flags & LvalueBit) ? 1 : 0,
value = has_direct_access ? (has_write_access ? DirectWriteAccessors : DirectAccessors)
: (has_write_access ? WriteAccessors : ReadOnlyAccessors)
};
};
template <typename T>
struct evaluator_traits;
template <typename T>
struct evaluator;
} // end namespace internal
template <typename T>
struct NumTraits;
template <typename Derived>
struct EigenBase;
template <typename Derived>
class DenseBase;
template <typename Derived>
class PlainObjectBase;
template <typename Derived, int Level>
class DenseCoeffsBase;
template <typename Scalar_, int Rows_, int Cols_,
int Options_ = AutoAlign | ((Rows_ == 1 && Cols_ != 1) ? Eigen::RowMajor
: (Cols_ == 1 && Rows_ != 1) ? Eigen::ColMajor
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION),
int MaxRows_ = Rows_, int MaxCols_ = Cols_>
class Matrix;
template <typename Derived>
class MatrixBase;
template <typename Derived>
class ArrayBase;
template <typename ExpressionType, unsigned int Added, unsigned int Removed>
class Flagged;
template <typename ExpressionType, template <typename> class StorageBase>
class NoAlias;
template <typename ExpressionType>
class NestByValue;
template <typename ExpressionType>
class ForceAlignedAccess;
template <typename ExpressionType>
class SwapWrapper;
template <typename XprType, int BlockRows = Dynamic, int BlockCols = Dynamic, bool InnerPanel = false>
class Block;
template <typename XprType, typename RowIndices, typename ColIndices>
class IndexedView;
template <typename XprType, int Rows = Dynamic, int Cols = Dynamic, int Order = 0>
class Reshaped;
template <typename FirstType, typename SizeType, typename IncrType>
class ArithmeticSequence;
template <typename MatrixType, int Size = Dynamic>
class VectorBlock;
template <typename MatrixType>
class Transpose;
template <typename MatrixType>
class Conjugate;
template <typename NullaryOp, typename MatrixType>
class CwiseNullaryOp;
template <typename UnaryOp, typename MatrixType>
class CwiseUnaryOp;
template <typename BinaryOp, typename Lhs, typename Rhs>
class CwiseBinaryOp;
template <typename TernaryOp, typename Arg1, typename Arg2, typename Arg3>
class CwiseTernaryOp;
template <typename Decomposition, typename Rhstype>
class Solve;
template <typename XprType>
class Inverse;
template <typename Lhs, typename Rhs, int Option = DefaultProduct>
class Product;
template <typename Derived>
class DiagonalBase;
template <typename DiagonalVectorType_>
class DiagonalWrapper;
template <typename Scalar_, int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime>
class DiagonalMatrix;
template <typename MatrixType, typename DiagonalType, int ProductOrder>
class DiagonalProduct;
template <typename MatrixType, int Index = 0>
class Diagonal;
template <typename Derived>
class SkewSymmetricBase;
template <typename VectorType_>
class SkewSymmetricWrapper;
template <typename Scalar_>
class SkewSymmetricMatrix3;
template <int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType = int>
class PermutationMatrix;
template <int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType = int>
class Transpositions;
template <typename Derived>
class PermutationBase;
template <typename Derived>
class TranspositionsBase;
template <typename IndicesType_>
class PermutationWrapper;
template <typename IndicesType_>
class TranspositionsWrapper;
template <typename Derived,
int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors>
class MapBase;
template <int OuterStrideAtCompileTime, int InnerStrideAtCompileTime>
class Stride;
template <int Value = Dynamic>
class InnerStride;
template <int Value = Dynamic>
class OuterStride;
template <typename MatrixType, int MapOptions = Unaligned, typename StrideType = Stride<0, 0>>
class Map;
template <typename Derived>
class RefBase;
template <typename PlainObjectType, int Options = 0,
typename StrideType =
typename std::conditional_t<PlainObjectType::IsVectorAtCompileTime, InnerStride<1>, OuterStride<>>>
class Ref;
template <typename ViewOp, typename MatrixType, typename StrideType = Stride<0, 0>>
class CwiseUnaryView;
template <typename Derived>
class TriangularBase;
template <typename MatrixType, unsigned int Mode>
class TriangularView;
template <typename MatrixType, unsigned int Mode>
class SelfAdjointView;
template <typename MatrixType>
class SparseView;
template <typename ExpressionType>
class WithFormat;
template <typename MatrixType>
struct CommaInitializer;
template <typename Derived>
class ReturnByValue;
template <typename ExpressionType>
class ArrayWrapper;
template <typename ExpressionType>
class MatrixWrapper;
template <typename Derived>
class SolverBase;
template <typename XprType>
class InnerIterator;
namespace internal {
template <typename XprType>
class generic_randaccess_stl_iterator;
template <typename XprType>
class pointer_based_stl_iterator;
template <typename XprType, DirectionType Direction>
class subvector_stl_iterator;
template <typename XprType, DirectionType Direction>
class subvector_stl_reverse_iterator;
template <typename DecompositionType>
struct kernel_retval_base;
template <typename DecompositionType>
struct kernel_retval;
template <typename DecompositionType>
struct image_retval_base;
template <typename DecompositionType>
struct image_retval;
} // end namespace internal
namespace internal {
template <typename Scalar_, int Rows = Dynamic, int Cols = Dynamic, int Supers = Dynamic, int Subs = Dynamic,
int Options = 0>
class BandMatrix;
}
namespace internal {
template <typename Lhs, typename Rhs>
struct product_type;
template <bool>
struct EnableIf;
/** \internal
* \class product_evaluator
* Products need their own evaluator with more template arguments allowing for
* easier partial template specializations.
*/
template <typename T, int ProductTag = internal::product_type<typename T::Lhs, typename T::Rhs>::ret,
typename LhsShape = typename evaluator_traits<typename T::Lhs>::Shape,
typename RhsShape = typename evaluator_traits<typename T::Rhs>::Shape,
typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
typename RhsScalar = typename traits<typename T::Rhs>::Scalar>
struct product_evaluator;
} // namespace internal
template <typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs, Rhs>::value>
struct ProductReturnType;
// this is a workaround for sun CC
template <typename Lhs, typename Rhs>
struct LazyProductReturnType;
namespace internal {
// Provides scalar/packet-wise product and product with accumulation
// with optional conjugation of the arguments.
template <typename LhsScalar, typename RhsScalar, bool ConjLhs = false, bool ConjRhs = false>
struct conj_helper;
template <typename LhsScalar, typename RhsScalar = LhsScalar>
struct scalar_sum_op;
template <typename LhsScalar, typename RhsScalar = LhsScalar>
struct scalar_difference_op;
template <typename LhsScalar, typename RhsScalar = LhsScalar>
struct scalar_conj_product_op;
template <typename LhsScalar, typename RhsScalar = LhsScalar, int NaNPropagation = PropagateFast>
struct scalar_min_op;
template <typename LhsScalar, typename RhsScalar = LhsScalar, int NaNPropagation = PropagateFast>
struct scalar_max_op;
template <typename Scalar>
struct scalar_opposite_op;
template <typename Scalar>
struct scalar_conjugate_op;
template <typename Scalar>
struct scalar_real_op;
template <typename Scalar>
struct scalar_imag_op;
template <typename Scalar>
struct scalar_abs_op;
template <typename Scalar>
struct scalar_abs2_op;
template <typename LhsScalar, typename RhsScalar = LhsScalar>
struct scalar_absolute_difference_op;
template <typename Scalar>
struct scalar_sqrt_op;
template <typename Scalar>
struct scalar_cbrt_op;
template <typename Scalar>
struct scalar_rsqrt_op;
template <typename Scalar>
struct scalar_exp_op;
template <typename Scalar>
struct scalar_log_op;
template <typename Scalar>
struct scalar_cos_op;
template <typename Scalar>
struct scalar_sin_op;
template <typename Scalar>
struct scalar_acos_op;
template <typename Scalar>
struct scalar_asin_op;
template <typename Scalar>
struct scalar_tan_op;
template <typename Scalar>
struct scalar_atan_op;
template <typename LhsScalar, typename RhsScalar = LhsScalar>
struct scalar_atan2_op;
template <typename Scalar>
struct scalar_inverse_op;
template <typename Scalar>
struct scalar_square_op;
template <typename Scalar>
struct scalar_cube_op;
template <typename Scalar, typename NewType>
struct scalar_cast_op;
template <typename Scalar>
struct scalar_random_op;
template <typename Scalar>
struct scalar_constant_op;
template <typename Scalar>
struct scalar_identity_op;
template <typename Scalar>
struct scalar_sign_op;
template <typename Scalar, typename ScalarExponent>
struct scalar_pow_op;
template <typename Scalar, typename ScalarExponent, bool BaseIsInteger, bool ExponentIsInteger, bool BaseIsComplex,
bool ExponentIsComplex>
struct scalar_unary_pow_op;
template <typename LhsScalar, typename RhsScalar = LhsScalar>
struct scalar_hypot_op;
template <typename LhsScalar, typename RhsScalar = LhsScalar>
struct scalar_product_op;
template <typename LhsScalar, typename RhsScalar = LhsScalar>
struct scalar_quotient_op;
// logical and bitwise operations
template <typename Scalar>
struct scalar_boolean_and_op;
template <typename Scalar>
struct scalar_boolean_or_op;
template <typename Scalar>
struct scalar_boolean_xor_op;
template <typename Scalar>
struct scalar_boolean_not_op;
template <typename Scalar>
struct scalar_bitwise_and_op;
template <typename Scalar>
struct scalar_bitwise_or_op;
template <typename Scalar>
struct scalar_bitwise_xor_op;
template <typename Scalar>
struct scalar_bitwise_not_op;
// SpecialFunctions module
template <typename Scalar>
struct scalar_lgamma_op;
template <typename Scalar>
struct scalar_digamma_op;
template <typename Scalar>
struct scalar_erf_op;
template <typename Scalar>
struct scalar_erfc_op;
template <typename Scalar>
struct scalar_ndtri_op;
template <typename Scalar>
struct scalar_igamma_op;
template <typename Scalar>
struct scalar_igammac_op;
template <typename Scalar>
struct scalar_zeta_op;
template <typename Scalar>
struct scalar_betainc_op;
// Bessel functions in SpecialFunctions module
template <typename Scalar>
struct scalar_bessel_i0_op;
template <typename Scalar>
struct scalar_bessel_i0e_op;
template <typename Scalar>
struct scalar_bessel_i1_op;
template <typename Scalar>
struct scalar_bessel_i1e_op;
template <typename Scalar>
struct scalar_bessel_j0_op;
template <typename Scalar>
struct scalar_bessel_y0_op;
template <typename Scalar>
struct scalar_bessel_j1_op;
template <typename Scalar>
struct scalar_bessel_y1_op;
template <typename Scalar>
struct scalar_bessel_k0_op;
template <typename Scalar>
struct scalar_bessel_k0e_op;
template <typename Scalar>
struct scalar_bessel_k1_op;
template <typename Scalar>
struct scalar_bessel_k1e_op;
} // end namespace internal
struct IOFormat;
// Array module
template <typename Scalar_, int Rows_, int Cols_,
int Options_ = AutoAlign | ((Rows_ == 1 && Cols_ != 1) ? Eigen::RowMajor
: (Cols_ == 1 && Rows_ != 1) ? Eigen::ColMajor
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION),
int MaxRows_ = Rows_, int MaxCols_ = Cols_>
class Array;
template <typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
class Select;
template <typename MatrixType, typename BinaryOp, int Direction>
class PartialReduxExpr;
template <typename ExpressionType, int Direction>
class VectorwiseOp;
template <typename MatrixType, int RowFactor, int ColFactor>
class Replicate;
template <typename MatrixType, int Direction = BothDirections>
class Reverse;
#if defined(EIGEN_USE_LAPACKE) && defined(lapack_int)
// Lapacke interface requires StorageIndex to be lapack_int
typedef lapack_int DefaultPermutationIndex;
#else
typedef int DefaultPermutationIndex;
#endif
template <typename MatrixType, typename PermutationIndex = DefaultPermutationIndex>
class FullPivLU;
template <typename MatrixType, typename PermutationIndex = DefaultPermutationIndex>
class PartialPivLU;
namespace internal {
template <typename MatrixType>
struct inverse_impl;
}
template <typename MatrixType>
class HouseholderQR;
template <typename MatrixType, typename PermutationIndex = DefaultPermutationIndex>
class ColPivHouseholderQR;
template <typename MatrixType, typename PermutationIndex = DefaultPermutationIndex>
class FullPivHouseholderQR;
template <typename MatrixType, typename PermutationIndex = DefaultPermutationIndex>
class CompleteOrthogonalDecomposition;
template <typename MatrixType>
class SVDBase;
template <typename MatrixType, int Options = 0>
class JacobiSVD;
template <typename MatrixType, int Options = 0>
class BDCSVD;
template <typename MatrixType, int UpLo = Lower>
class LLT;
template <typename MatrixType, int UpLo = Lower>
class LDLT;
template <typename VectorsType, typename CoeffsType, int Side = OnTheLeft>
class HouseholderSequence;
template <typename Scalar>
class JacobiRotation;
// Geometry module:
namespace internal {
template <typename Derived, typename OtherDerived, int Size = MatrixBase<Derived>::SizeAtCompileTime>
struct cross_impl;
}
template <typename Derived, int Dim_>
class RotationBase;
template <typename Derived>
class QuaternionBase;
template <typename Scalar>
class Rotation2D;
template <typename Scalar>
class AngleAxis;
template <typename Scalar, int Dim>
class Translation;
template <typename Scalar, int Dim>
class AlignedBox;
template <typename Scalar, int Options = AutoAlign>
class Quaternion;
template <typename Scalar, int Dim, int Mode, int Options_ = AutoAlign>
class Transform;
template <typename Scalar_, int AmbientDim_, int Options = AutoAlign>
class ParametrizedLine;
template <typename Scalar_, int AmbientDim_, int Options = AutoAlign>
class Hyperplane;
template <typename Scalar>
class UniformScaling;
template <typename MatrixType, int Direction>
class Homogeneous;
// Sparse module:
template <typename Derived>
class SparseMatrixBase;
// MatrixFunctions module
template <typename Derived>
struct MatrixExponentialReturnValue;
template <typename Derived>
class MatrixFunctionReturnValue;
template <typename Derived>
class MatrixSquareRootReturnValue;
template <typename Derived>
class MatrixLogarithmReturnValue;
template <typename Derived>
class MatrixPowerReturnValue;
template <typename Derived>
class MatrixComplexPowerReturnValue;
namespace internal {
template <typename Scalar>
struct stem_function {
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef ComplexScalar type(ComplexScalar, int);
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_FORWARDDECLARATIONS_H