| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H |
| #define EIGEN_SPARSE_SELFADJOINTVIEW_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \ingroup SparseCore_Module |
| * \class SparseSelfAdjointView |
| * |
| * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. |
| * |
| * \param MatrixType the type of the dense matrix storing the coefficients |
| * \param Mode can be either \c #Lower or \c #Upper |
| * |
| * This class is an expression of a sefladjoint matrix from a triangular part of a matrix |
| * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() |
| * and most of the time this is the only way that it is used. |
| * |
| * \sa SparseMatrixBase::selfadjointView() |
| */ |
| namespace internal { |
| |
| template <typename MatrixType, unsigned int Mode> |
| struct traits<SparseSelfAdjointView<MatrixType, Mode> > : traits<MatrixType> {}; |
| |
| template <int SrcMode, int DstMode, bool NonHermitian, typename MatrixType, int DestOrder> |
| void permute_symm_to_symm( |
| const MatrixType& mat, |
| SparseMatrix<typename MatrixType::Scalar, DestOrder, typename MatrixType::StorageIndex>& _dest, |
| const typename MatrixType::StorageIndex* perm = 0); |
| |
| template <int Mode, bool NonHermitian, typename MatrixType, int DestOrder> |
| void permute_symm_to_fullsymm( |
| const MatrixType& mat, |
| SparseMatrix<typename MatrixType::Scalar, DestOrder, typename MatrixType::StorageIndex>& _dest, |
| const typename MatrixType::StorageIndex* perm = 0); |
| |
| } // namespace internal |
| |
| template <typename MatrixType, unsigned int Mode_> |
| class SparseSelfAdjointView : public EigenBase<SparseSelfAdjointView<MatrixType, Mode_> > { |
| public: |
| enum { |
| Mode = Mode_, |
| TransposeMode = ((int(Mode) & int(Upper)) ? Lower : 0) | ((int(Mode) & int(Lower)) ? Upper : 0), |
| RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime, |
| ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime |
| }; |
| |
| typedef EigenBase<SparseSelfAdjointView> Base; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::StorageIndex StorageIndex; |
| typedef Matrix<StorageIndex, Dynamic, 1> VectorI; |
| typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested; |
| typedef internal::remove_all_t<MatrixTypeNested> MatrixTypeNested_; |
| |
| explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix) { |
| eigen_assert(rows() == cols() && "SelfAdjointView is only for squared matrices"); |
| } |
| |
| inline Index rows() const { return m_matrix.rows(); } |
| inline Index cols() const { return m_matrix.cols(); } |
| |
| /** \internal \returns a reference to the nested matrix */ |
| const MatrixTypeNested_& matrix() const { return m_matrix; } |
| std::remove_reference_t<MatrixTypeNested>& matrix() { return m_matrix; } |
| |
| /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a |
| * rhs. |
| * |
| * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix |
| * product. Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing |
| * the product. |
| */ |
| template <typename OtherDerived> |
| Product<SparseSelfAdjointView, OtherDerived> operator*(const SparseMatrixBase<OtherDerived>& rhs) const { |
| return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived()); |
| } |
| |
| /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a |
| * rhs. |
| * |
| * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix |
| * product. Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing |
| * the product. |
| */ |
| template <typename OtherDerived> |
| friend Product<OtherDerived, SparseSelfAdjointView> operator*(const SparseMatrixBase<OtherDerived>& lhs, |
| const SparseSelfAdjointView& rhs) { |
| return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs); |
| } |
| |
| /** Efficient sparse self-adjoint matrix times dense vector/matrix product */ |
| template <typename OtherDerived> |
| Product<SparseSelfAdjointView, OtherDerived> operator*(const MatrixBase<OtherDerived>& rhs) const { |
| return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived()); |
| } |
| |
| /** Efficient dense vector/matrix times sparse self-adjoint matrix product */ |
| template <typename OtherDerived> |
| friend Product<OtherDerived, SparseSelfAdjointView> operator*(const MatrixBase<OtherDerived>& lhs, |
| const SparseSelfAdjointView& rhs) { |
| return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs); |
| } |
| |
| /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: |
| * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. |
| * |
| * \returns a reference to \c *this |
| * |
| * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply |
| * call this function with u.adjoint(). |
| */ |
| template <typename DerivedU> |
| SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1)); |
| |
| /** \returns an expression of P H P^-1 */ |
| // TODO implement twists in a more evaluator friendly fashion |
| SparseSymmetricPermutationProduct<MatrixTypeNested_, Mode> twistedBy( |
| const PermutationMatrix<Dynamic, Dynamic, StorageIndex>& perm) const { |
| return SparseSymmetricPermutationProduct<MatrixTypeNested_, Mode>(m_matrix, perm); |
| } |
| |
| template <typename SrcMatrixType, int SrcMode> |
| SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType, SrcMode>& permutedMatrix) { |
| internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix); |
| return *this; |
| } |
| |
| SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) { |
| PermutationMatrix<Dynamic, Dynamic, StorageIndex> pnull; |
| return *this = src.twistedBy(pnull); |
| } |
| |
| // Since we override the copy-assignment operator, we need to explicitly re-declare the copy-constructor |
| EIGEN_DEFAULT_COPY_CONSTRUCTOR(SparseSelfAdjointView) |
| |
| template <typename SrcMatrixType, unsigned int SrcMode> |
| SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType, SrcMode>& src) { |
| PermutationMatrix<Dynamic, Dynamic, StorageIndex> pnull; |
| return *this = src.twistedBy(pnull); |
| } |
| |
| void resize(Index rows, Index cols) { |
| EIGEN_ONLY_USED_FOR_DEBUG(rows); |
| EIGEN_ONLY_USED_FOR_DEBUG(cols); |
| eigen_assert(rows == this->rows() && cols == this->cols() && |
| "SparseSelfadjointView::resize() does not actually allow to resize."); |
| } |
| |
| protected: |
| MatrixTypeNested m_matrix; |
| // mutable VectorI m_countPerRow; |
| // mutable VectorI m_countPerCol; |
| private: |
| template <typename Dest> |
| void evalTo(Dest&) const; |
| }; |
| |
| /*************************************************************************** |
| * Implementation of SparseMatrixBase methods |
| ***************************************************************************/ |
| |
| template <typename Derived> |
| template <unsigned int UpLo> |
| typename SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type |
| SparseMatrixBase<Derived>::selfadjointView() const { |
| return SparseSelfAdjointView<const Derived, UpLo>(derived()); |
| } |
| |
| template <typename Derived> |
| template <unsigned int UpLo> |
| typename SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type |
| SparseMatrixBase<Derived>::selfadjointView() { |
| return SparseSelfAdjointView<Derived, UpLo>(derived()); |
| } |
| |
| /*************************************************************************** |
| * Implementation of SparseSelfAdjointView methods |
| ***************************************************************************/ |
| |
| template <typename MatrixType, unsigned int Mode> |
| template <typename DerivedU> |
| SparseSelfAdjointView<MatrixType, Mode>& SparseSelfAdjointView<MatrixType, Mode>::rankUpdate( |
| const SparseMatrixBase<DerivedU>& u, const Scalar& alpha) { |
| SparseMatrix<Scalar, (MatrixType::Flags & RowMajorBit) ? RowMajor : ColMajor> tmp = u * u.adjoint(); |
| if (alpha == Scalar(0)) |
| m_matrix = tmp.template triangularView<Mode>(); |
| else |
| m_matrix += alpha * tmp.template triangularView<Mode>(); |
| |
| return *this; |
| } |
| |
| namespace internal { |
| |
| // TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> |
| // in the future selfadjoint-ness should be defined by the expression traits |
| // such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to |
| // make it work) |
| template <typename MatrixType, unsigned int Mode> |
| struct evaluator_traits<SparseSelfAdjointView<MatrixType, Mode> > { |
| typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind; |
| typedef SparseSelfAdjointShape Shape; |
| }; |
| |
| struct SparseSelfAdjoint2Sparse {}; |
| |
| template <> |
| struct AssignmentKind<SparseShape, SparseSelfAdjointShape> { |
| typedef SparseSelfAdjoint2Sparse Kind; |
| }; |
| template <> |
| struct AssignmentKind<SparseSelfAdjointShape, SparseShape> { |
| typedef Sparse2Sparse Kind; |
| }; |
| |
| template <typename DstXprType, typename SrcXprType, typename Functor> |
| struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse> { |
| typedef typename DstXprType::StorageIndex StorageIndex; |
| typedef internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar> AssignOpType; |
| |
| template <typename DestScalar, int StorageOrder> |
| static void run(SparseMatrix<DestScalar, StorageOrder, StorageIndex>& dst, const SrcXprType& src, |
| const AssignOpType& /*func*/) { |
| internal::permute_symm_to_fullsymm<SrcXprType::Mode, false>(src.matrix(), dst); |
| } |
| |
| // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced |
| // to: |
| template <typename DestScalar, int StorageOrder, typename AssignFunc> |
| static void run(SparseMatrix<DestScalar, StorageOrder, StorageIndex>& dst, const SrcXprType& src, |
| const AssignFunc& func) { |
| SparseMatrix<DestScalar, StorageOrder, StorageIndex> tmp(src.rows(), src.cols()); |
| run(tmp, src, AssignOpType()); |
| call_assignment_no_alias_no_transpose(dst, tmp, func); |
| } |
| |
| template <typename DestScalar, int StorageOrder> |
| static void run(SparseMatrix<DestScalar, StorageOrder, StorageIndex>& dst, const SrcXprType& src, |
| const internal::add_assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /* func */) { |
| SparseMatrix<DestScalar, StorageOrder, StorageIndex> tmp(src.rows(), src.cols()); |
| run(tmp, src, AssignOpType()); |
| dst += tmp; |
| } |
| |
| template <typename DestScalar, int StorageOrder> |
| static void run(SparseMatrix<DestScalar, StorageOrder, StorageIndex>& dst, const SrcXprType& src, |
| const internal::sub_assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /* func */) { |
| SparseMatrix<DestScalar, StorageOrder, StorageIndex> tmp(src.rows(), src.cols()); |
| run(tmp, src, AssignOpType()); |
| dst -= tmp; |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /*************************************************************************** |
| * Implementation of sparse self-adjoint time dense matrix |
| ***************************************************************************/ |
| |
| namespace internal { |
| |
| template <int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType> |
| inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, |
| const AlphaType& alpha) { |
| EIGEN_ONLY_USED_FOR_DEBUG(alpha); |
| |
| typedef typename internal::nested_eval<SparseLhsType, DenseRhsType::MaxColsAtCompileTime>::type SparseLhsTypeNested; |
| typedef internal::remove_all_t<SparseLhsTypeNested> SparseLhsTypeNestedCleaned; |
| typedef evaluator<SparseLhsTypeNestedCleaned> LhsEval; |
| typedef typename LhsEval::InnerIterator LhsIterator; |
| typedef typename SparseLhsType::Scalar LhsScalar; |
| |
| enum { |
| LhsIsRowMajor = (LhsEval::Flags & RowMajorBit) == RowMajorBit, |
| ProcessFirstHalf = ((Mode & (Upper | Lower)) == (Upper | Lower)) || ((Mode & Upper) && !LhsIsRowMajor) || |
| ((Mode & Lower) && LhsIsRowMajor), |
| ProcessSecondHalf = !ProcessFirstHalf |
| }; |
| |
| SparseLhsTypeNested lhs_nested(lhs); |
| LhsEval lhsEval(lhs_nested); |
| |
| // work on one column at once |
| for (Index k = 0; k < rhs.cols(); ++k) { |
| for (Index j = 0; j < lhs.outerSize(); ++j) { |
| LhsIterator i(lhsEval, j); |
| // handle diagonal coeff |
| if (ProcessSecondHalf) { |
| while (i && i.index() < j) ++i; |
| if (i && i.index() == j) { |
| res.coeffRef(j, k) += alpha * i.value() * rhs.coeff(j, k); |
| ++i; |
| } |
| } |
| |
| // premultiplied rhs for scatters |
| typename ScalarBinaryOpTraits<AlphaType, typename DenseRhsType::Scalar>::ReturnType rhs_j(alpha * rhs(j, k)); |
| // accumulator for partial scalar product |
| typename DenseResType::Scalar res_j(0); |
| for (; (ProcessFirstHalf ? i && i.index() < j : i); ++i) { |
| LhsScalar lhs_ij = i.value(); |
| if (!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij); |
| res_j += lhs_ij * rhs.coeff(i.index(), k); |
| res(i.index(), k) += numext::conj(lhs_ij) * rhs_j; |
| } |
| res.coeffRef(j, k) += alpha * res_j; |
| |
| // handle diagonal coeff |
| if (ProcessFirstHalf && i && (i.index() == j)) res.coeffRef(j, k) += alpha * i.value() * rhs.coeff(j, k); |
| } |
| } |
| } |
| |
| template <typename LhsView, typename Rhs, int ProductType> |
| struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> |
| : generic_product_impl_base<LhsView, Rhs, |
| generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> > { |
| template <typename Dest> |
| static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha) { |
| typedef typename LhsView::MatrixTypeNested_ Lhs; |
| typedef typename nested_eval<Lhs, Dynamic>::type LhsNested; |
| typedef typename nested_eval<Rhs, Dynamic>::type RhsNested; |
| LhsNested lhsNested(lhsView.matrix()); |
| RhsNested rhsNested(rhs); |
| |
| internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha); |
| } |
| }; |
| |
| template <typename Lhs, typename RhsView, int ProductType> |
| struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> |
| : generic_product_impl_base<Lhs, RhsView, |
| generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> > { |
| template <typename Dest> |
| static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha) { |
| typedef typename RhsView::MatrixTypeNested_ Rhs; |
| typedef typename nested_eval<Lhs, Dynamic>::type LhsNested; |
| typedef typename nested_eval<Rhs, Dynamic>::type RhsNested; |
| LhsNested lhsNested(lhs); |
| RhsNested rhsNested(rhsView.matrix()); |
| |
| // transpose everything |
| Transpose<Dest> dstT(dst); |
| internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), |
| lhsNested.transpose(), dstT, alpha); |
| } |
| }; |
| |
| // NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix |
| // TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore |
| |
| template <typename LhsView, typename Rhs, int ProductTag> |
| struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape> |
| : public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject> { |
| typedef Product<LhsView, Rhs, DefaultProduct> XprType; |
| typedef typename XprType::PlainObject PlainObject; |
| typedef evaluator<PlainObject> Base; |
| |
| product_evaluator(const XprType& xpr) : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols()) { |
| internal::construct_at<Base>(this, m_result); |
| generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, |
| xpr.rhs()); |
| } |
| |
| protected: |
| typename Rhs::PlainObject m_lhs; |
| PlainObject m_result; |
| }; |
| |
| template <typename Lhs, typename RhsView, int ProductTag> |
| struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape> |
| : public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject> { |
| typedef Product<Lhs, RhsView, DefaultProduct> XprType; |
| typedef typename XprType::PlainObject PlainObject; |
| typedef evaluator<PlainObject> Base; |
| |
| product_evaluator(const XprType& xpr) : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols()) { |
| ::new (static_cast<Base*>(this)) Base(m_result); |
| generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo( |
| m_result, xpr.lhs(), m_rhs); |
| } |
| |
| protected: |
| typename Lhs::PlainObject m_rhs; |
| PlainObject m_result; |
| }; |
| |
| } // namespace internal |
| |
| /*************************************************************************** |
| * Implementation of symmetric copies and permutations |
| ***************************************************************************/ |
| namespace internal { |
| |
| template <int Mode, bool NonHermitian, typename MatrixType, int DestOrder> |
| void permute_symm_to_fullsymm( |
| const MatrixType& mat, |
| SparseMatrix<typename MatrixType::Scalar, DestOrder, typename MatrixType::StorageIndex>& _dest, |
| const typename MatrixType::StorageIndex* perm) { |
| typedef typename MatrixType::StorageIndex StorageIndex; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef SparseMatrix<Scalar, DestOrder, StorageIndex> Dest; |
| typedef Matrix<StorageIndex, Dynamic, 1> VectorI; |
| typedef evaluator<MatrixType> MatEval; |
| typedef typename evaluator<MatrixType>::InnerIterator MatIterator; |
| |
| MatEval matEval(mat); |
| Dest& dest(_dest.derived()); |
| enum { StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor) }; |
| |
| Index size = mat.rows(); |
| VectorI count; |
| count.resize(size); |
| count.setZero(); |
| dest.resize(size, size); |
| for (Index j = 0; j < size; ++j) { |
| Index jp = perm ? perm[j] : j; |
| for (MatIterator it(matEval, j); it; ++it) { |
| Index i = it.index(); |
| Index r = it.row(); |
| Index c = it.col(); |
| Index ip = perm ? perm[i] : i; |
| if (Mode == int(Upper | Lower)) |
| count[StorageOrderMatch ? jp : ip]++; |
| else if (r == c) |
| count[ip]++; |
| else if ((Mode == Lower && r > c) || (Mode == Upper && r < c)) { |
| count[ip]++; |
| count[jp]++; |
| } |
| } |
| } |
| Index nnz = count.sum(); |
| |
| // reserve space |
| dest.resizeNonZeros(nnz); |
| dest.outerIndexPtr()[0] = 0; |
| for (Index j = 0; j < size; ++j) dest.outerIndexPtr()[j + 1] = dest.outerIndexPtr()[j] + count[j]; |
| for (Index j = 0; j < size; ++j) count[j] = dest.outerIndexPtr()[j]; |
| |
| // copy data |
| for (StorageIndex j = 0; j < size; ++j) { |
| for (MatIterator it(matEval, j); it; ++it) { |
| StorageIndex i = internal::convert_index<StorageIndex>(it.index()); |
| Index r = it.row(); |
| Index c = it.col(); |
| |
| StorageIndex jp = perm ? perm[j] : j; |
| StorageIndex ip = perm ? perm[i] : i; |
| |
| if (Mode == int(Upper | Lower)) { |
| Index k = count[StorageOrderMatch ? jp : ip]++; |
| dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp; |
| dest.valuePtr()[k] = it.value(); |
| } else if (r == c) { |
| Index k = count[ip]++; |
| dest.innerIndexPtr()[k] = ip; |
| dest.valuePtr()[k] = it.value(); |
| } else if (((Mode & Lower) == Lower && r > c) || ((Mode & Upper) == Upper && r < c)) { |
| if (!StorageOrderMatch) std::swap(ip, jp); |
| Index k = count[jp]++; |
| dest.innerIndexPtr()[k] = ip; |
| dest.valuePtr()[k] = it.value(); |
| k = count[ip]++; |
| dest.innerIndexPtr()[k] = jp; |
| dest.valuePtr()[k] = (NonHermitian ? it.value() : numext::conj(it.value())); |
| } |
| } |
| } |
| } |
| |
| template <int SrcMode_, int DstMode_, bool NonHermitian, typename MatrixType, int DstOrder> |
| void permute_symm_to_symm(const MatrixType& mat, |
| SparseMatrix<typename MatrixType::Scalar, DstOrder, typename MatrixType::StorageIndex>& _dest, |
| const typename MatrixType::StorageIndex* perm) { |
| typedef typename MatrixType::StorageIndex StorageIndex; |
| typedef typename MatrixType::Scalar Scalar; |
| SparseMatrix<Scalar, DstOrder, StorageIndex>& dest(_dest.derived()); |
| typedef Matrix<StorageIndex, Dynamic, 1> VectorI; |
| typedef evaluator<MatrixType> MatEval; |
| typedef typename evaluator<MatrixType>::InnerIterator MatIterator; |
| |
| enum { |
| SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor, |
| StorageOrderMatch = int(SrcOrder) == int(DstOrder), |
| DstMode = DstOrder == RowMajor ? (DstMode_ == Upper ? Lower : Upper) : DstMode_, |
| SrcMode = SrcOrder == RowMajor ? (SrcMode_ == Upper ? Lower : Upper) : SrcMode_ |
| }; |
| |
| MatEval matEval(mat); |
| |
| Index size = mat.rows(); |
| VectorI count(size); |
| count.setZero(); |
| dest.resize(size, size); |
| for (StorageIndex j = 0; j < size; ++j) { |
| StorageIndex jp = perm ? perm[j] : j; |
| for (MatIterator it(matEval, j); it; ++it) { |
| StorageIndex i = it.index(); |
| if ((int(SrcMode) == int(Lower) && i < j) || (int(SrcMode) == int(Upper) && i > j)) continue; |
| |
| StorageIndex ip = perm ? perm[i] : i; |
| count[int(DstMode) == int(Lower) ? (std::min)(ip, jp) : (std::max)(ip, jp)]++; |
| } |
| } |
| dest.outerIndexPtr()[0] = 0; |
| for (Index j = 0; j < size; ++j) dest.outerIndexPtr()[j + 1] = dest.outerIndexPtr()[j] + count[j]; |
| dest.resizeNonZeros(dest.outerIndexPtr()[size]); |
| for (Index j = 0; j < size; ++j) count[j] = dest.outerIndexPtr()[j]; |
| |
| for (StorageIndex j = 0; j < size; ++j) { |
| for (MatIterator it(matEval, j); it; ++it) { |
| StorageIndex i = it.index(); |
| if ((int(SrcMode) == int(Lower) && i < j) || (int(SrcMode) == int(Upper) && i > j)) continue; |
| |
| StorageIndex jp = perm ? perm[j] : j; |
| StorageIndex ip = perm ? perm[i] : i; |
| |
| Index k = count[int(DstMode) == int(Lower) ? (std::min)(ip, jp) : (std::max)(ip, jp)]++; |
| dest.innerIndexPtr()[k] = int(DstMode) == int(Lower) ? (std::max)(ip, jp) : (std::min)(ip, jp); |
| |
| if (!StorageOrderMatch) std::swap(ip, jp); |
| if (((int(DstMode) == int(Lower) && ip < jp) || (int(DstMode) == int(Upper) && ip > jp))) |
| dest.valuePtr()[k] = (NonHermitian ? it.value() : numext::conj(it.value())); |
| else |
| dest.valuePtr()[k] = it.value(); |
| } |
| } |
| } |
| |
| } // namespace internal |
| |
| // TODO implement twists in a more evaluator friendly fashion |
| |
| namespace internal { |
| |
| template <typename MatrixType, int Mode> |
| struct traits<SparseSymmetricPermutationProduct<MatrixType, Mode> > : traits<MatrixType> {}; |
| |
| } // namespace internal |
| |
| template <typename MatrixType, int Mode> |
| class SparseSymmetricPermutationProduct : public EigenBase<SparseSymmetricPermutationProduct<MatrixType, Mode> > { |
| public: |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::StorageIndex StorageIndex; |
| enum { |
| RowsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::RowsAtCompileTime, |
| ColsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::ColsAtCompileTime |
| }; |
| |
| protected: |
| typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> Perm; |
| |
| public: |
| typedef Matrix<StorageIndex, Dynamic, 1> VectorI; |
| typedef typename MatrixType::Nested MatrixTypeNested; |
| typedef internal::remove_all_t<MatrixTypeNested> NestedExpression; |
| |
| SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm) : m_matrix(mat), m_perm(perm) {} |
| |
| inline Index rows() const { return m_matrix.rows(); } |
| inline Index cols() const { return m_matrix.cols(); } |
| |
| const NestedExpression& matrix() const { return m_matrix; } |
| const Perm& perm() const { return m_perm; } |
| |
| protected: |
| MatrixTypeNested m_matrix; |
| const Perm& m_perm; |
| }; |
| |
| namespace internal { |
| |
| template <typename DstXprType, typename MatrixType, int Mode, typename Scalar> |
| struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType, Mode>, |
| internal::assign_op<Scalar, typename MatrixType::Scalar>, Sparse2Sparse> { |
| typedef SparseSymmetricPermutationProduct<MatrixType, Mode> SrcXprType; |
| typedef typename DstXprType::StorageIndex DstIndex; |
| template <int Options> |
| static void run(SparseMatrix<Scalar, Options, DstIndex>& dst, const SrcXprType& src, |
| const internal::assign_op<Scalar, typename MatrixType::Scalar>&) { |
| // internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data()); |
| SparseMatrix<Scalar, (Options & RowMajor) == RowMajor ? ColMajor : RowMajor, DstIndex> tmp; |
| internal::permute_symm_to_fullsymm<Mode, false>(src.matrix(), tmp, src.perm().indices().data()); |
| dst = tmp; |
| } |
| |
| template <typename DestType, unsigned int DestMode> |
| static void run(SparseSelfAdjointView<DestType, DestMode>& dst, const SrcXprType& src, |
| const internal::assign_op<Scalar, typename MatrixType::Scalar>&) { |
| internal::permute_symm_to_symm<Mode, DestMode, false>(src.matrix(), dst.matrix(), src.perm().indices().data()); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SPARSE_SELFADJOINTVIEW_H |