blob: 32980c79e41aa59d5adf5132c03db604bcf320fb [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
#define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \class TensorKChippingReshaping
* \ingroup CXX11_Tensor_Module
*
* \brief A chip is a thin slice, corresponding to a column or a row in a 2-d tensor.
*
*
*/
namespace internal {
template <DenseIndex DimId, typename XprType>
struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType> {
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef std::remove_reference_t<Nested> Nested_;
static constexpr int NumDimensions = XprTraits::NumDimensions - 1;
static constexpr int Layout = XprTraits::Layout;
typedef typename XprTraits::PointerType PointerType;
};
template <DenseIndex DimId, typename XprType>
struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense> {
typedef const TensorChippingOp<DimId, XprType> EIGEN_DEVICE_REF type;
};
template <DenseIndex DimId, typename XprType>
struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type> {
typedef TensorChippingOp<DimId, XprType> type;
};
template <DenseIndex DimId>
struct DimensionId {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) {
EIGEN_UNUSED_VARIABLE(dim);
eigen_assert(dim == DimId);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const { return DimId; }
};
template <>
struct DimensionId<Dynamic> {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) : actual_dim(dim) { eigen_assert(dim >= 0); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const { return actual_dim; }
private:
const DenseIndex actual_dim;
};
} // end namespace internal
template <DenseIndex DimId, typename XprType>
class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> > {
public:
typedef TensorBase<TensorChippingOp<DimId, XprType> > Base;
typedef typename Eigen::internal::traits<TensorChippingOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename Eigen::internal::nested<TensorChippingOp>::type Nested;
typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset, const Index dim)
: m_xpr(expr), m_offset(offset), m_dim(dim) {
eigen_assert(dim < XprType::NumDimensions && dim >= 0 && "Chip_Dim_out_of_range");
}
EIGEN_DEVICE_FUNC const Index offset() const { return m_offset; }
EIGEN_DEVICE_FUNC const Index dim() const { return m_dim.actualDim(); }
EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; }
EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorChippingOp)
protected:
typename XprType::Nested m_xpr;
const Index m_offset;
const internal::DimensionId<DimId> m_dim;
};
// Eval as rvalue
template <DenseIndex DimId, typename ArgType, typename Device>
struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> {
typedef TensorChippingOp<DimId, ArgType> XprType;
static constexpr int NumInputDims =
internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
static constexpr int NumDims = NumInputDims - 1;
typedef typename XprType::Index Index;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
enum {
// Alignment can't be guaranteed at compile time since it depends on the
// slice offsets.
IsAligned = false,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess,
// Chipping of outer-most dimension is a trivial operation, because we can
// read and write directly from the underlying tensor using single offset.
IsOuterChipping = (Layout == ColMajor && DimId == NumInputDims - 1) || (Layout == RowMajor && DimId == 0),
// Chipping inner-most dimension.
IsInnerChipping = (Layout == ColMajor && DimId == 0) || (Layout == RowMajor && DimId == NumInputDims - 1),
// Prefer block access if the underlying expression prefers it, otherwise
// only if chipping is not trivial.
PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess || !IsOuterChipping,
CoordAccess = false, // to be implemented
RawAccess = false
};
typedef std::remove_const_t<Scalar> ScalarNoConst;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
typedef internal::TensorBlockDescriptor<NumInputDims, Index> ArgTensorBlockDesc;
typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock ArgTensorBlock;
typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims, Layout, Index> TensorBlock;
//===--------------------------------------------------------------------===//
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_dim(op.dim()), m_device(device) {
EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
eigen_assert(NumInputDims > m_dim.actualDim());
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
eigen_assert(op.offset() < input_dims[m_dim.actualDim()]);
int j = 0;
for (int i = 0; i < NumInputDims; ++i) {
if (i != m_dim.actualDim()) {
m_dimensions[j] = input_dims[i];
++j;
}
}
m_stride = 1;
m_inputStride = 1;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = 0; i < m_dim.actualDim(); ++i) {
m_stride *= input_dims[i];
m_inputStride *= input_dims[i];
}
} else {
for (int i = NumInputDims - 1; i > m_dim.actualDim(); --i) {
m_stride *= input_dims[i];
m_inputStride *= input_dims[i];
}
}
m_inputStride *= input_dims[m_dim.actualDim()];
m_inputOffset = m_stride * op.offset();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
m_impl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
return m_impl.coeff(srcCoeff(index));
}
template <int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
eigen_assert(index + PacketSize - 1 < dimensions().TotalSize());
if (isInnerChipping()) {
// m_stride is equal to 1, so let's avoid the integer division.
eigen_assert(m_stride == 1);
Index inputIndex = index * m_inputStride + m_inputOffset;
EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
EIGEN_UNROLL_LOOP
for (int i = 0; i < PacketSize; ++i) {
values[i] = m_impl.coeff(inputIndex);
inputIndex += m_inputStride;
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
} else if (isOuterChipping()) {
// m_stride is always greater than index, so let's avoid the integer division.
eigen_assert(m_stride > index);
return m_impl.template packet<LoadMode>(index + m_inputOffset);
} else {
const Index idx = index / m_stride;
const Index rem = index - idx * m_stride;
if (rem + PacketSize <= m_stride) {
Index inputIndex = idx * m_inputStride + m_inputOffset + rem;
return m_impl.template packet<LoadMode>(inputIndex);
} else {
// Cross the stride boundary. Fallback to slow path.
EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
EIGEN_UNROLL_LOOP
for (int i = 0; i < PacketSize; ++i) {
values[i] = coeff(index);
++index;
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
}
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
double cost = 0;
if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) ||
(static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims - 1)) {
cost += TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
} else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims - 1) ||
(static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) {
cost += TensorOpCost::AddCost<Index>();
} else {
cost += 3 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>() + 3 * TensorOpCost::AddCost<Index>();
}
return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, cost, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const {
const size_t target_size = m_device.lastLevelCacheSize();
return internal::TensorBlockResourceRequirements::merge(
internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size), m_impl.getResourceRequirements());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
bool root_of_expr_ast = false) const {
const Index chip_dim = m_dim.actualDim();
DSizes<Index, NumInputDims> input_block_dims;
for (int i = 0; i < NumInputDims; ++i) {
input_block_dims[i] = i < chip_dim ? desc.dimension(i) : i > chip_dim ? desc.dimension(i - 1) : 1;
}
ArgTensorBlockDesc arg_desc(srcCoeff(desc.offset()), input_block_dims);
// Try to reuse destination buffer for materializing argument block.
if (desc.HasDestinationBuffer()) {
DSizes<Index, NumInputDims> arg_destination_strides;
for (int i = 0; i < NumInputDims; ++i) {
arg_destination_strides[i] = i < chip_dim ? desc.destination().strides()[i]
: i > chip_dim ? desc.destination().strides()[i - 1]
: 0; // for dimensions of size `1` stride should never be used.
}
arg_desc.template AddDestinationBuffer<Layout>(desc.destination().template data<ScalarNoConst>(),
arg_destination_strides);
}
ArgTensorBlock arg_block = m_impl.block(arg_desc, scratch, root_of_expr_ast);
if (!arg_desc.HasDestinationBuffer()) desc.DropDestinationBuffer();
if (arg_block.data() != NULL) {
// Forward argument block buffer if possible.
return TensorBlock(arg_block.kind(), arg_block.data(), desc.dimensions());
} else {
// Assign argument block expression to a buffer.
// Prepare storage for the materialized chipping result.
const typename TensorBlock::Storage block_storage = TensorBlock::prepareStorage(desc, scratch);
typedef internal::TensorBlockAssignment<ScalarNoConst, NumInputDims, typename ArgTensorBlock::XprType, Index>
TensorBlockAssignment;
TensorBlockAssignment::Run(
TensorBlockAssignment::target(arg_desc.dimensions(), internal::strides<Layout>(arg_desc.dimensions()),
block_storage.data()),
arg_block.expr());
return block_storage.AsTensorMaterializedBlock();
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Storage::Type data() const {
typename Storage::Type result = constCast(m_impl.data());
if (isOuterChipping() && result) {
return result + m_inputOffset;
} else {
return NULL;
}
}
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const {
Index inputIndex;
if (isInnerChipping()) {
// m_stride is equal to 1, so let's avoid the integer division.
eigen_assert(m_stride == 1);
inputIndex = index * m_inputStride + m_inputOffset;
} else if (isOuterChipping()) {
// m_stride is always greater than index, so let's avoid the integer
// division.
eigen_assert(m_stride > index);
inputIndex = index + m_inputOffset;
} else {
const Index idx = index / m_stride;
inputIndex = idx * m_inputStride + m_inputOffset;
index -= idx * m_stride;
inputIndex += index;
}
return inputIndex;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool isInnerChipping() const {
return IsInnerChipping || (static_cast<int>(Layout) == ColMajor && m_dim.actualDim() == 0) ||
(static_cast<int>(Layout) == RowMajor && m_dim.actualDim() == NumInputDims - 1);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool isOuterChipping() const {
return IsOuterChipping || (static_cast<int>(Layout) == ColMajor && m_dim.actualDim() == NumInputDims - 1) ||
(static_cast<int>(Layout) == RowMajor && m_dim.actualDim() == 0);
}
Dimensions m_dimensions;
Index m_stride;
Index m_inputOffset;
Index m_inputStride;
TensorEvaluator<ArgType, Device> m_impl;
const internal::DimensionId<DimId> m_dim;
const Device EIGEN_DEVICE_REF m_device;
};
// Eval as lvalue
template <DenseIndex DimId, typename ArgType, typename Device>
struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
: public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> {
typedef TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> Base;
typedef TensorChippingOp<DimId, ArgType> XprType;
static constexpr int NumInputDims =
internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
static constexpr int NumDims = NumInputDims - 1;
typedef typename XprType::Index Index;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
enum {
IsAligned = false,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess,
Layout = TensorEvaluator<ArgType, Device>::Layout,
RawAccess = false
};
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
//===--------------------------------------------------------------------===//
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) const {
return this->m_impl.coeffRef(this->srcCoeff(index));
}
template <int StoreMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) const {
if (this->isInnerChipping()) {
// m_stride is equal to 1, so let's avoid the integer division.
eigen_assert(this->m_stride == 1);
EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
Index inputIndex = index * this->m_inputStride + this->m_inputOffset;
EIGEN_UNROLL_LOOP
for (int i = 0; i < PacketSize; ++i) {
this->m_impl.coeffRef(inputIndex) = values[i];
inputIndex += this->m_inputStride;
}
} else if (this->isOuterChipping()) {
// m_stride is always greater than index, so let's avoid the integer division.
eigen_assert(this->m_stride > index);
this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x);
} else {
const Index idx = index / this->m_stride;
const Index rem = index - idx * this->m_stride;
if (rem + PacketSize <= this->m_stride) {
const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem;
this->m_impl.template writePacket<StoreMode>(inputIndex, x);
} else {
// Cross stride boundary. Fallback to slow path.
EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
EIGEN_UNROLL_LOOP
for (int i = 0; i < PacketSize; ++i) {
this->coeffRef(index) = values[i];
++index;
}
}
}
}
template <typename TensorBlock>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(const TensorBlockDesc& desc, const TensorBlock& block) {
eigen_assert(this->m_impl.data() != NULL);
const Index chip_dim = this->m_dim.actualDim();
DSizes<Index, NumInputDims> input_block_dims;
for (int i = 0; i < NumInputDims; ++i) {
input_block_dims[i] = i < chip_dim ? desc.dimension(i) : i > chip_dim ? desc.dimension(i - 1) : 1;
}
typedef TensorReshapingOp<const DSizes<Index, NumInputDims>, const typename TensorBlock::XprType> TensorBlockExpr;
typedef internal::TensorBlockAssignment<Scalar, NumInputDims, TensorBlockExpr, Index> TensorBlockAssign;
TensorBlockAssign::Run(
TensorBlockAssign::target(input_block_dims, internal::strides<Layout>(this->m_impl.dimensions()),
this->m_impl.data(), this->srcCoeff(desc.offset())),
block.expr().reshape(input_block_dims));
}
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H