blob: e55459d0c51ac232a49af2fba4c2c22d8668dbfc [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
// evaluator for thread pool device
#ifdef EIGEN_USE_THREADS
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
template <typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>,
ThreadPoolDevice>
: public TensorContractionEvaluatorBase<TensorEvaluator<
const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice>> {
typedef ThreadPoolDevice Device;
typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self;
typedef TensorContractionEvaluatorBase<Self> Base;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
typedef std::remove_const_t<typename XprType::Scalar> Scalar;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static constexpr int Layout = TensorEvaluator<LeftArgType, Device>::Layout;
// Most of the code is assuming that both input tensors are ColMajor. If the
// inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
// If we want to compute A * B = C, where A is LHS and B is RHS, the code
// will pretend B is LHS and A is RHS.
typedef std::conditional_t<static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>
EvalLeftArgType;
typedef std::conditional_t<static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>
EvalRightArgType;
static constexpr int LDims =
internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
static constexpr int RDims =
internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
static constexpr int ContractDims = internal::array_size<Indices>::value;
typedef array<Index, LDims> left_dim_mapper_t;
typedef array<Index, RDims> right_dim_mapper_t;
typedef array<Index, ContractDims> contract_t;
typedef array<Index, LDims - ContractDims> left_nocontract_t;
typedef array<Index, RDims - ContractDims> right_nocontract_t;
static constexpr int NumDims = LDims + RDims - 2 * ContractDims;
typedef DSizes<Index, NumDims> Dimensions;
// typedefs needed in evalTo
typedef std::remove_const_t<typename EvalLeftArgType::Scalar> LhsScalar;
typedef std::remove_const_t<typename EvalRightArgType::Scalar> RhsScalar;
typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {}
template <int Alignment>
void evalProduct(Scalar* buffer) const {
evalProductImpl<NoCallback, Alignment>(buffer, NoCallback());
}
template <typename EvalToCallback, int Alignment>
void evalProductAsync(Scalar* buffer, EvalToCallback done) const {
evalProductImpl<EvalToCallback, Alignment>(buffer, std::move(done));
}
template <typename DoneCallback, int Alignment>
void evalProductImpl(Scalar* buffer, DoneCallback done) const {
// This function computes a lot of heuristics in multiple steps, and it
// also has multiple exit points. To keep it sane, readable and all in one
// place, sync/async execution decision is made at runtime at the very end.
//
// (1) In sync mode we allocate Context on the stack, submit computations
// to the device thread pool, and block on a barrier until it is
// completed.
//
// (2) In async mode we allocate Context on the heap, and after all tasks
// are finished, we call provided the done callback, and delete a
// context from the heap.
//
// (*) EvalParallelContext & EvalShardedByInnerDimContext owns all the state
// and temporary buffers, required for executing the tensor contraction.
// They are responsible for cleaning it up after contraction is done.
static const bool IsEvalInSyncMode = std::is_same<DoneCallback, NoCallback>::value;
const Index m = this->m_i_size;
const Index n = this->m_j_size;
const Index k = this->m_k_size;
if (m == 0 || n == 0 || k == 0) return;
// Compute a set of algorithm parameters:
// - kernel block sizes (bm, bn, bk)
// - task grain sizes (number of kernels executed per task: gm, gn)
// - number of threads
// - sharding by row/column
// - parallel packing or first lhs then rhs
// and some derived parameters:
// - number of tasks (nm, nn, nk)
// - number of kernels (nm0, nn0)
// Unfortunately, all these parameters are tightly interdependent.
// So in some cases we first compute approximate values, then compute other
// values based on these approximations and then refine the approximations.
// There are lots of heuristics here. There is some reasoning behind them,
// but ultimately they are just tuned on contraction benchmarks for
// different input configurations, thread counts and instruction sets.
// So feel free to question any of them.
// Compute whether we want to shard by row or by column.
// This is a first approximation, it will be refined later. Since we don't
// know number of threads yet we use 2, because what's we are most
// interested in at this point is whether it makes sense to use
// parallelization at all or not.
bool shard_by_col = shardByCol(m, n, 2);
// First approximation of kernel blocking sizes.
// Again, we don't know number of threads yet, so we use 2.
Index bm, bn, bk;
if (shard_by_col) {
internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index, internal::ShardByCol> blocking(k, m, n,
2);
bm = blocking.mc();
bn = blocking.nc();
bk = blocking.kc();
} else {
internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index, internal::ShardByRow> blocking(k, m, n,
2);
bm = blocking.mc();
bn = blocking.nc();
bk = blocking.kc();
}
// Compute optimal number of threads.
// Note: we use bk instead of k here because we are interested in amount of
// _parallelizable_ computations, and computations are not parallelizable
// across k dimension.
const TensorOpCost cost = contractionCost(m, n, bm, bn, bk, shard_by_col, false);
int num_threads =
TensorCostModel<ThreadPoolDevice>::numThreads(static_cast<double>(n) * m, cost, this->m_device.numThreads());
int num_threads_by_k = numThreadsInnerDim(m, n, k);
if (shardByInnerDim(m, n, k, num_threads, num_threads_by_k)) {
// We are in the scenario where it is more effective to shard by the
// inner dimension.
if (IsEvalInSyncMode) {
EvalShardedByInnerDimContext<DoneCallback> ctx(this, num_threads_by_k, buffer, m, n, k, std::move(done));
ctx.template run<Alignment>();
} else {
auto* ctx =
new EvalShardedByInnerDimContext<DoneCallback>(this, num_threads_by_k, buffer, m, n, k, std::move(done));
ctx->template runAsync<Alignment>();
}
return;
}
// TODO(dvyukov): this is a stop-gap to prevent regressions while the cost
// model is not tuned. Remove this when the cost model is tuned.
if (n == 1) num_threads = 1;
if (num_threads == 1) {
TENSOR_CONTRACTION_DISPATCH(this->template evalProductSequential, Unaligned, (buffer));
if (!IsEvalInSyncMode) done();
return;
}
// Now that we know number of threads, recalculate sharding and blocking.
shard_by_col = shardByCol(m, n, num_threads);
if (shard_by_col) {
internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index, internal::ShardByCol> blocking(
k, m, n, num_threads);
bm = blocking.mc();
bn = blocking.nc();
bk = blocking.kc();
} else {
internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index, internal::ShardByRow> blocking(
k, m, n, num_threads);
bm = blocking.mc();
bn = blocking.nc();
bk = blocking.kc();
}
// Number of kernels for each dimension.
Index nm0 = numext::div_ceil(m, bm);
Index nn0 = numext::div_ceil(n, bn);
Index nk = numext::div_ceil(k, bk);
// Calculate task grain size (number of kernels executed per task).
// This task size coarsening serves two purposes:
// 1. It reduces per-task overheads including synchronization overheads.
// 2. It allows to use caches better (reuse the same packed rhs in several
// consecutive kernels).
Index gm = 1;
Index gn = 1;
// If we are sharding by column, then we prefer to reduce rows first.
if (shard_by_col) {
gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
} else {
gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
}
// Number of tasks in each dimension.
Index nm = numext::div_ceil(nm0, gm);
Index nn = numext::div_ceil(nn0, gn);
// If there is enough concurrency in the sharding dimension, we choose not
// to paralellize by the other dimension, and execute all kernels in sync
// mode. This reduces parallelism from the nm x nn down to nn
// (shard_by_col==true) or nm (shard_by_col==false).
const Index sharding_dim_tasks = shard_by_col ? nn : nm;
const int num_worker_threads = this->m_device.numThreadsInPool();
// With small number of threads we want to make sure that we do not reduce
// parallelism too much. With large number of threads we trade maximum
// parallelism for better memory locality.
const float oversharding_factor = num_worker_threads <= 4 ? 8.0
: num_worker_threads <= 8 ? 4.0
: num_worker_threads <= 16 ? 2.0
: num_worker_threads <= 32 ? 1.0
: num_worker_threads <= 64 ? 0.8
: /* num_worker_threads > 64 */ 0.6;
const bool parallelize_by_sharding_dim_only = sharding_dim_tasks >= oversharding_factor * num_worker_threads;
// Last by not least, decide whether we want to issue both lhs and rhs
// packing in parallel; or issue lhs packing first, and then issue rhs
// packing when lhs packing completes (for !shard_by_col lhs and rhs are
// swapped). Parallel packing allows more parallelism (for both packing and
// kernels), while sequential packing provides better locality (once
// a thread finishes rhs packing it proceed to kernels with that rhs).
// First, we are interested in parallel packing if there are few tasks.
bool parallel_pack = num_threads >= nm * nn;
// Also do parallel packing if all data fits into L2$.
if (m * bk * Index(sizeof(LhsScalar)) + n * bk * Index(sizeof(RhsScalar)) <= l2CacheSize() * num_threads)
parallel_pack = true;
// But don't do it if we will use each rhs only once. Locality seems to be
// more important in this case.
if ((shard_by_col ? nm : nn) == 1) parallel_pack = false;
// Also don't get in the way of parallelize_by_sharding_dim_only
// optimization.
if (parallelize_by_sharding_dim_only) parallel_pack = false;
// TODO(ezhulnev): With if contexpr we don't need SyncEvalParallelContext.
if (IsEvalInSyncMode) {
#define CONTEXT_ARGS \
(this, num_threads, buffer, m, n, k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, nn0, shard_by_col, parallel_pack, \
parallelize_by_sharding_dim_only, NoCallback()) \
.run()
TENSOR_CONTRACTION_DISPATCH(SyncEvalParallelContext, Alignment, CONTEXT_ARGS);
#undef CONTEXT_ARGS
} else {
#define CONTEXT_ARGS \
(this, num_threads, buffer, m, n, k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, nn0, shard_by_col, parallel_pack, \
parallelize_by_sharding_dim_only, std::move(done))
TENSOR_CONTRACTION_ASYNC_DISPATCH(EvalParallelContext, DoneCallback, Alignment, CONTEXT_ARGS, run());
#undef CONTEXT_ARGS
}
}
// ------------------------------------------------------------------------ //
// Dummy struct to represent an empty DoneCallback.
struct NoCallback {
void operator()() { eigen_assert(false && "NoCallback should never be called"); }
};
// ------------------------------------------------------------------------ //
template <typename DoneCallback, typename Context>
class EvalParallelNotification;
// Synchronous evaluation notification that blocks caller thread in Wait().
template <typename Context>
class EvalParallelNotification<NoCallback, Context> {
public:
EvalParallelNotification(Context*, NoCallback) {}
void Notify() { done_.Notify(); }
void Wait() { done_.Wait(); }
private:
Eigen::Notification done_;
};
// Asynchronous evaluation notification that does not block in Wait().
template <typename DoneCallback, typename Context>
class EvalParallelNotification {
public:
EvalParallelNotification(Context* ctx, DoneCallback done) : ctx_(ctx), done_(std::move(done)) {}
void Notify() {
// Make a copy of done callback, because it will be destructed when we
// will delete context in the next line (EvalParallelNotification is a
// data member of EvalParallelContext class).
DoneCallback done_copy = std::move(done_);
// Delete parallel evaluation context.
delete ctx_;
// Now safely call the done callback.
done_copy();
}
void Wait() {}
private:
Context* ctx_;
DoneCallback done_;
};
// Context orchestrates sync/async parallel contraction evaluation. When it is
// executed in asynchronous mode, it owns all the shared state that might be
// accessible by block packing and kernel tasks.
template <typename DoneCallback, bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
bool rhs_inner_dim_reordered, int Alignment>
class EvalParallelContext {
public:
typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t,
contract_t, internal::packet_traits<LhsScalar>::size,
lhs_inner_dim_contiguous, false, Unaligned>
LhsMapper;
typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t,
contract_t, internal::packet_traits<RhsScalar>::size,
rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned>
RhsMapper;
typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
typedef internal::TensorContractionKernel<Scalar, LhsScalar, RhsScalar, Index, OutputMapper, LhsMapper, RhsMapper>
TensorContractionKernel;
typedef typename TensorContractionKernel::LhsBlock LhsBlock;
typedef typename TensorContractionKernel::RhsBlock RhsBlock;
typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle;
EvalParallelContext(const Self* self, int num_threads, Scalar* buffer, Index tm, Index tn, Index tk, Index bm,
Index bn, Index bk, Index nm, Index nn, Index nk, Index gm, Index gn, Index nm0, Index nn0,
bool shard_by_col, bool parallel_pack, bool parallelize_by_sharding_dim_only, DoneCallback done)
: created_by_thread_id_(std::this_thread::get_id()),
done_(this, std::move(done)),
device_(self->m_device),
lhs_(self->m_leftImpl, self->m_left_nocontract_strides, self->m_i_strides, self->m_left_contracting_strides,
self->m_k_strides),
rhs_(self->m_rightImpl, self->m_right_nocontract_strides, self->m_j_strides,
self->m_right_contracting_strides, self->m_k_strides),
buffer_(buffer),
output_(buffer, tm),
output_kernel_(self->m_output_kernel),
tensor_contraction_params_(self->m_tensor_contraction_params),
num_threads_(num_threads),
shard_by_col_(shard_by_col),
parallel_pack_(parallel_pack),
parallelize_by_sharding_dim_only_(parallelize_by_sharding_dim_only),
m_(tm),
n_(tn),
k_(tk),
bm_(bm),
bn_(bn),
bk_(bk),
nm_(nm),
nn_(nn),
nk_(nk),
gm_(gm),
gn_(gn),
nm0_(nm0),
nn0_(nn0),
kernel_(m_, k_, n_, bm_, bk_, bn_),
num_thread_local_allocations_(0),
// We reserve 2X more capacity for a thread local values, than the
// number of threads in the pool to efficiently handle task stealing
// by threads that are not managed by the pool.
thread_local_capacity(2 * (parallelize_by_sharding_dim_only_ ? device_.numThreadsInPool() : 0)),
// We will use only one of the Lhs/Rhs thread local storage depending
// on the shard_by_col value and we parallelize by sharding dim ONLY.
lhs_thread_local_blocks_(shard_by_col_ ? 0 : thread_local_capacity, {*this}, {*this}),
rhs_thread_local_blocks_(shard_by_col_ ? thread_local_capacity : 0, {*this}, {*this}) {
// These two options are mutually exclusive.
eigen_assert(!(parallel_pack && parallelize_by_sharding_dim_only));
for (Index x = 0; x < P; x++) {
// Normal number of notifications for k slice switch is
// nm_ + nn_ + nm_ * nn_. However, first P - 1 slices will receive only
// nm_ + nn_ notifications, because they will not receive notifications
// from preceding kernels.
state_switch_[x] =
x == 0 ? 1 : (parallel_pack_ ? nn_ + nm_ : (shard_by_col_ ? nn_ : nm_)) + (x == P - 1 ? nm_ * nn_ : 0);
state_packing_ready_[x] = parallel_pack_ ? 0 : (shard_by_col_ ? nm_ : nn_);
state_kernel_[x] = new std::atomic<uint8_t>*[nm_];
for (Index m = 0; m < nm_; m++) {
state_kernel_[x][m] = new std::atomic<uint8_t>[nn_];
// Kernels generally receive 3 notifications (previous kernel + 2
// packing), but the first slice won't get notifications from previous
// kernels.
for (Index n = 0; n < nn_; n++)
state_kernel_[x][m][n].store((x == 0 ? 0 : 1) + (parallel_pack_ ? 2 : 1), std::memory_order_relaxed);
}
}
// Allocate memory for packed rhs/lhs matrices.
packed_mem_ = kernel_.allocateSlices( //
device_, //
/*num_lhs=*/nm0_, //
/*num_rhs=*/nn0_, //
/*num_slices=*/std::min<Index>(nk_, P - 1), //
packed_lhs_, packed_rhs_);
if (parallelize_by_sharding_dim_only_) {
const int num_worker_threads = device_.numThreadsInPool();
if (shard_by_col) {
can_use_thread_local_packed_ = new std::atomic<bool>[nn_];
for (int i = 0; i < nn_; ++i) can_use_thread_local_packed_[i].store(true, std::memory_order_relaxed);
Index num_blocks = num_worker_threads * gn_;
thread_local_pre_alocated_mem_ = kernel_.allocateSlices( //
device_, //
/*num_lhs=*/0, //
/*num_rhs=*/num_blocks, //
/*num_slices=*/1, //
/*lhs_blocks=*/nullptr, &rhs_thread_local_pre_allocated_);
} else {
can_use_thread_local_packed_ = new std::atomic<bool>[nm_];
for (int i = 0; i < nm_; ++i) can_use_thread_local_packed_[i].store(true, std::memory_order_relaxed);
Index num_blocks = num_worker_threads * gm_;
thread_local_pre_alocated_mem_ = kernel_.allocateSlices( //
device_, //
/*num_lhs=*/num_blocks, //
/*num_rhs=*/0, //
/*num_slices=*/1, &lhs_thread_local_pre_allocated_, //
/*rhs_blocks=*/nullptr);
}
}
}
~EvalParallelContext() {
for (Index x = 0; x < P; x++) {
for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m];
delete[] state_kernel_[x];
}
kernel_.deallocate(device_, packed_mem_);
if (parallelize_by_sharding_dim_only_) {
kernel_.deallocate(device_, thread_local_pre_alocated_mem_);
delete[] can_use_thread_local_packed_;
}
}
void run() {
// Kick off packing of the first slice.
signal_switch(0, 1);
// Wait for overall completion.
//
// If parallel evaluation is executed in async mode, this is a no-op, and
// Wait() will return immediately. In synchronous mode it will block the
// caller thread until it will receive notification from last task.
//
// In async mode, last task when completed will call done callback from
// the same thread, and will delete this context.
//
// TODO(dvyukov): This wait can lead to deadlock if contraction is
// evaluated in synchronous mode. If nthreads contractions are
// concurrently submitted from worker threads, this wait will block all
// worker threads and the system will deadlock.
done_.Wait();
}
private:
std::thread::id created_by_thread_id_;
// This notification is specialized on the type of DoneCallback and can be
// blocking or non-blocking.
EvalParallelNotification<DoneCallback, EvalParallelContext> done_;
const Device& device_;
LhsMapper lhs_;
RhsMapper rhs_;
Scalar* const buffer_;
OutputMapper output_;
OutputKernelType output_kernel_;
TensorContractionParams tensor_contraction_params_;
const int num_threads_;
const bool shard_by_col_;
const bool parallel_pack_;
const bool parallelize_by_sharding_dim_only_;
// Matrix sizes.
const Index m_;
const Index n_;
const Index k_;
// Block sizes.
const Index bm_;
const Index bn_;
const Index bk_;
// Number of tasks.
const Index nm_;
const Index nn_;
const Index nk_;
// Task grain sizes (number of kernels executed per task).
const Index gm_;
const Index gn_;
// Number of blocks (this is different from ni_/nn_ because of task size
// coarsening).
const Index nm0_;
const Index nn0_;
// Tensor contraction kernel.
TensorContractionKernel kernel_;
// Parallelization strategy.
//
// Blocks related to the same k block can run in parallel because they write
// to different output blocks. So we parallelize within k slices, this
// gives us parallelism level of m x n. Before we can start any kernels
// related to k-th slice, we need to issue m lhs packing tasks and n rhs
// packing tasks.
//
// However, there is a bottleneck when we are finishing kernels for k-th
// slice (at the very end there is only 1 runnable kernel). To mitigate this
// bottleneck we allow kernels from k-th and k+1-th slices to run in
// parallel. Note that (m, n, k) and (m, n, k+1) kernels write to the same
// output block, so they must not run in parallel.
//
// This gives us the following dependency graph.
// On each k slice we have m x n kernel tasks, m lhs paking tasks and n rhs
// packing tasks.
// Kernel (m, n, k) can start when:
// - kernel (m, n, k-1) has finished
// - lhs packing (m, k) has finished
// - rhs packing (n, k) has finished
// Lhs/rhs packing can start when:
// - all k-1 packing has finished (artificially imposed to limit amount of
// parallel packing)
//
// On top of that we limit runnable tasks to two consecutive k slices.
// This is done to limit amount of memory we need for packed lhs/rhs
// (for each k slice we need m*bk + n*bk memory in packed_lhs_/packed_rhs_).
//
// state_switch_ tracks when we are ready to switch to the next k slice.
// state_kernel_[m][n] tracks when we are ready to kick off kernel (m, n).
// These variable are rolling over 3 consecutive k slices: first two we are
// actively executing + one to track completion of kernels in the second
// slice.
static constexpr Index P = 3;
// Handle to the allocated temporary storage for Lhs/Rhs blocks.
BlockMemHandle packed_mem_;
std::vector<LhsBlock> packed_lhs_[P - 1];
std::vector<RhsBlock> packed_rhs_[P - 1];
// If we choose to parallelize only by the sharding dimension, each thread
// will have it's own "thead local" (not a c++ thread local storage) memory
// for packed_lhs or packed_rhs (shard_by_col = false of true). This memory
// can't be passed to a kernel that might execute on a different thread.
//
// In practice when we are ready to pack memory for the sharding dimension
// (rhs if shard_by_col==true) of the K-th slice, all kernels for K-1 slice
// already computed (99% of the time), and we can pack data into the thread
// local storage, and guarantee that all the kernels will be executed
// immediately in the same thread. This significantly increases L1 cache hit
// ratio and reduces pressure on the memory bus.
//
// It's still possible that kernel for the K-th slice will be ready before
// completion of the K-1 kernel, so we have to allocate "global" packed_lhs_
// and packed_rhs_ to allow kernels to be executed later on a thread
// different from the thread that was used for packing.
// Handle for pre-allocated thread local memory buffers.
BlockMemHandle thread_local_pre_alocated_mem_;
// Only one of these will be initialized depending on shard_by_col value
// (the size will be `num_worker_threads * num_grains_in_the_sharding_dim`).
std::vector<LhsBlock> lhs_thread_local_pre_allocated_;
std::vector<RhsBlock> rhs_thread_local_pre_allocated_;
// How many thread local blocks were already allocated.
std::atomic<int> num_thread_local_allocations_;
const int thread_local_capacity;
// We will use pre-allocated Lhs/Rhs blocks defined above, if the number of
// unique threads in a system is below or equal to the number of threads in
// a thread pool. We will fallback on dynamic memory allocation after that.
// ThreadLocalBlocks is a container for Lhs or Rhs thread local buffers. Its
// size is equal to the grain size in Lhs/Rhs sharding dimension.
template <typename BlockType>
class ThreadLocalBlocks {
public:
ThreadLocalBlocks() = default;
ThreadLocalBlocks(BlockType* base, size_t grain_size)
: is_pre_allocated_(true), thread_local_pre_allocated_base_(base), grain_size_(grain_size) {}
ThreadLocalBlocks(BlockMemHandle mem_handle, std::vector<BlockType> blocks)
: is_pre_allocated_(false), mem_handle_(std::move(mem_handle)), blocks_(std::move(blocks)) {}
BlockType& block(int grain_index) {
eigen_assert(grain_index >= 0);
eigen_assert(static_cast<size_t>(grain_index) < size());
return is_pre_allocated_ ? thread_local_pre_allocated_base_[grain_index] : blocks_[grain_index];
}
void Release(EvalParallelContext& ctx) const {
if (!is_pre_allocated_) {
ctx.kernel_.deallocate(ctx.device_, mem_handle_);
}
}
size_t size() const { return is_pre_allocated_ ? grain_size_ : blocks_.size(); }
private:
bool is_pre_allocated_;
// Reuse pre-allocated thread local buffers.
BlockType* thread_local_pre_allocated_base_ = nullptr;
size_t grain_size_ = 0;
// These will be initialized only if `is_pre_allocated == false`.
BlockMemHandle mem_handle_{};
std::vector<BlockType> blocks_;
};
// ThreadLocalBlocksInitialize callable does custom thread local blocks
// initialization, and will reuse pre-allocated buffers if possible, or will
// dynamically allocate new memory.
//
// Lhs/Rhs blocks might be of the same type, so we have to pass explicitly
// for what side do we plan to do block allocation.
template <typename BlockType, bool is_rhs>
class ThreadLocalBlocksInitialize {
static constexpr bool kIsLhs = !is_rhs && std::is_same<BlockType, LhsBlock>::value;
static const bool kIsRhs = is_rhs && std::is_same<BlockType, RhsBlock>::value;
static_assert(kIsLhs || kIsRhs, "Unknown block type");
using Blocks = ThreadLocalBlocks<BlockType>;
public:
ThreadLocalBlocksInitialize(EvalParallelContext& ctx)
: ctx_(ctx), num_worker_threads_(ctx_.device_.numThreadsInPool()) {}
void operator()(Blocks& blocks) {
const int n = ctx_.num_thread_local_allocations_.fetch_add(1, std::memory_order_relaxed);
if (n >= num_worker_threads_) {
ThreadLocalBlocksAllocator<is_rhs>::allocate(ctx_, blocks);
} else {
ThreadLocalBlocksAllocator<is_rhs>::reuse(ctx_, n, blocks);
}
}
private:
// NOTE(ezhulenev): Without 'if constexpr' we have to put calls to
// TensorContractionKernel::allocateSlices into template specializations.
// Also explicit specializations are not allowed at class scope in C++03,
// EvalCtx type parameter is just a workaround for that limitation.
template <bool pack_rhs, typename EvalCtx = EvalParallelContext>
struct ThreadLocalBlocksAllocator;
template <typename EvalCtx>
struct ThreadLocalBlocksAllocator</*pack_rhs=*/true, EvalCtx> {
static void allocate(EvalCtx& ctx, Blocks& blocks) {
std::vector<RhsBlock> rhs_blocks;
BlockMemHandle mem_handle = ctx.kernel_.allocateSlices(ctx.device_,
/*num_lhs=*/0,
/*num_rhs=*/ctx.gn_,
/*num_slices=*/1,
/*lhs_blocks=*/nullptr, /*rhs_blocks=*/&rhs_blocks);
blocks = ThreadLocalBlocks<RhsBlock>(std::move(mem_handle), std::move(rhs_blocks));
}
static void reuse(EvalCtx& ctx, int index, Blocks& blocks) {
RhsBlock* ptr = &ctx.rhs_thread_local_pre_allocated_[ctx.gn_ * index];
blocks = ThreadLocalBlocks<RhsBlock>(ptr, ctx.gn_);
}
};
template <typename EvalCtx>
struct ThreadLocalBlocksAllocator</*pack_rhs=*/false, EvalCtx> {
static void allocate(EvalCtx& ctx, Blocks& blocks) {
std::vector<LhsBlock> lhs_blocks;
BlockMemHandle mem_handle = ctx.kernel_.allocateSlices(ctx.device_,
/*num_lhs=*/ctx.gm_,
/*num_rhs=*/0,
/*num_slices=*/1,
/*lhs_blocks=*/&lhs_blocks, /*rhs_blocks=*/nullptr);
blocks = ThreadLocalBlocks<LhsBlock>(std::move(mem_handle), std::move(lhs_blocks));
}
static void reuse(EvalCtx& ctx, int index, Blocks& blocks) {
LhsBlock* ptr = &ctx.lhs_thread_local_pre_allocated_[ctx.gm_ * index];
blocks = ThreadLocalBlocks<LhsBlock>(ptr, ctx.gm_);
}
};
EvalParallelContext& ctx_;
const int num_worker_threads_;
};
template <typename BlockType>
class ThreadLocalBlocksRelease {
public:
using Blocks = ThreadLocalBlocks<BlockType>;
ThreadLocalBlocksRelease(EvalParallelContext& ctx) : ctx_(ctx) {}
void operator()(Blocks& blocks) { blocks.Release(ctx_); }
private:
EvalParallelContext& ctx_;
};
// ThreadLocalBlocks initialization callables.
using ThreadLocalLhsInit = ThreadLocalBlocksInitialize<LhsBlock, /*is_rhs=*/false>;
using ThreadLocalRhsInit = ThreadLocalBlocksInitialize<RhsBlock, /*is_rhs=*/true>;
// ThreadLocalBlocks release callables.
using ThreadLocalLhsRelease = ThreadLocalBlocksRelease<LhsBlock>;
using ThreadLocalRhsRelease = ThreadLocalBlocksRelease<RhsBlock>;
// Thread local containers for Lhs/Rhs block packs. In practice only one of
// them will be used, depending on the shard_by_col value.
Eigen::ThreadLocal<ThreadLocalBlocks<LhsBlock>, ThreadLocalLhsInit, ThreadLocalLhsRelease> lhs_thread_local_blocks_;
Eigen::ThreadLocal<ThreadLocalBlocks<RhsBlock>, ThreadLocalRhsInit, ThreadLocalRhsRelease> rhs_thread_local_blocks_;
// After a particular shard for Kth slice missed thread local execution
// opportunity (K-1 slice didn't complete kernels execution), we can no
// longer schedule K+1 and following slices in thread local mode, because
// there is no more guarantee that previous kernels were executed
// sequentially in the same thread (size is nn_ or nm_).
std::atomic<bool>* can_use_thread_local_packed_;
std::atomic<uint8_t>** state_kernel_[P];
// state_switch_ is frequently modified by worker threads, while other
// fields are read-only after constructor. Let's move it to a separate cache
// line to reduce cache-coherency traffic.
char pad_[128];
std::atomic<Index> state_packing_ready_[P];
std::atomic<Index> state_switch_[P];
LhsBlock& packed_lhs(Index m, Index k, Index m1, bool use_thread_local) {
if (use_thread_local) {
eigen_assert(!shard_by_col_);
ThreadLocalBlocks<LhsBlock>& blocks = lhs_thread_local_blocks_.local();
Index grain_index = m1 - m * gm_;
return blocks.block(
internal::convert_index<int>(grain_index)); // FIXME better make ThreadLocalBlocks use Eigen::Index?
} else {
return packed_lhs_[k % (P - 1)][m1];
}
}
RhsBlock& packed_rhs(Index n, Index k, Index n1, bool use_thread_local) {
if (use_thread_local) {
eigen_assert(shard_by_col_);
ThreadLocalBlocks<RhsBlock>& blocks = rhs_thread_local_blocks_.local();
Index grain_index = n1 - n * gn_;
return blocks.block(
internal::convert_index<int>(grain_index)); // FIXME better make ThreadLocalBlocks use Eigen::Index?
} else {
return packed_rhs_[k % (P - 1)][n1];
}
}
// In following two methods (pack_lhs and pack_rhs), if we know for sure
// that we'll be able to immediately call a kernel with packed data, and do
// not submit it to the thread pool, we can use thread local memory for
// packed data.
//
// We can only reliably check it if we are running all kernels in sync mode
// (parallelize only by sharding dim). If kernel for m==0 (n==0) is ready to
// run, it's guaranteed that all kernels with larger values of m (n) are
// also ready, because we execute them in the same order for all K slices.
void pack_lhs(Index m, Index k) {
bool use_thread_local = false;
if (parallelize_by_sharding_dim_only_ && !shard_by_col_ &&
can_use_thread_local_packed_[m].load(std::memory_order_relaxed)) {
if (state_kernel_[k % P][m][0].load(std::memory_order_relaxed) == 1) {
use_thread_local = true;
} else {
// If we can't guarantee that all kernels in `k` slice will be
// executed sequentially in current thread, it's no longer safe to use
// thread local memory in following slices along the k dimensions.
eigen_assert(k > 0);
can_use_thread_local_packed_[m].store(false, std::memory_order_relaxed);
}
}
const Index mend = m * gm_ + gm(m);
for (Index m1 = m * gm_; m1 < mend; m1++)
kernel_.packLhs(&packed_lhs(m, k, m1, use_thread_local), lhs_.getSubMapper(m1 * bm_, k * bk_), bk(k), bm(m1));
if (!parallel_pack_ && shard_by_col_) {
eigen_assert(!use_thread_local);
signal_packing(k);
} else {
signal_switch(k + 1);
for (Index n = nn_ - 1; n >= 0; n--) {
bool sync = parallelize_by_sharding_dim_only_ || n == 0;
signal_kernel(m, n, k, sync, use_thread_local);
}
}
}
void pack_rhs(Index n, Index k) {
bool use_thread_local = false;
if (parallelize_by_sharding_dim_only_ && shard_by_col_ &&
can_use_thread_local_packed_[n].load(std::memory_order_relaxed)) {
if (state_kernel_[k % P][0][n].load(std::memory_order_relaxed) == 1) {
use_thread_local = true;
} else {
// If we can't guarantee that all kernels in `k` slice will be
// executed sequentially in current thread, it's no longer safe to use
// thread local memory in following slices along the k dimensions.
eigen_assert(k > 0);
can_use_thread_local_packed_[n].store(false, std::memory_order_relaxed);
}
}
const Index nend = n * gn_ + gn(n);
for (Index n1 = n * gn_; n1 < nend; n1++) {
if (!TensorContractionKernel::HasBeta && k == 0) {
// Zero the output memory in parallel, only if contraction kernel does
// not support `beta`. Otherwise we will pass beta 0.0 to the first
// call to the `TensorContractionKernel::invoke()`.
//
// On 10000x2x10000 mm zeroing can easily take half of time. Zero (bn
// x m) row. Safe to do here because all kernels that will write to
// this memory depend on completion of this task. Note: don't call
// device_.fill() here. device_.fill() blocks on thread pool
// worker thread, which can lead to underutilization and deadlocks.
std::fill_n(buffer_ + n1 * bn_ * m_, bn(n1) * m_, Scalar(0));
}
kernel_.packRhs(&packed_rhs(n, k, n1, use_thread_local), rhs_.getSubMapper(k * bk_, n1 * bn_), bk(k), bn(n1));
}
if (parallel_pack_ || shard_by_col_) {
signal_switch(k + 1);
for (Index m = nm_ - 1; m >= 0; m--) {
bool sync = parallelize_by_sharding_dim_only_ || m == 0;
signal_kernel(m, n, k, sync, use_thread_local);
}
} else {
eigen_assert(!use_thread_local);
signal_packing(k);
}
}
void kernel(Index m, Index n, Index k, bool use_thread_local) {
// Note: order of iteration matters here. Iteration over m is innermost
// because we want to reuse the same packed rhs in consecutive tasks
// (rhs fits into L2$ while lhs only into L3$).
const Index nend = n * gn_ + gn(n);
const Index mend = m * gm_ + gm(m);
// NOTE: output = alpha * LHS * RHS + beta * output.
const Scalar alpha = Scalar(1);
const Scalar beta = (TensorContractionKernel::HasBeta && k == 0) ? Scalar(0) : Scalar(1);
if (shard_by_col_) {
for (Index n1 = n * gn_; n1 < nend; n1++) {
for (Index m1 = m * gm_; m1 < mend; m1++) {
const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
kernel_.invoke(output_mapper, packed_lhs(m, k, m1, !shard_by_col_ && use_thread_local),
packed_rhs(n, k, n1, shard_by_col_ && use_thread_local), bm(m1), bk(k), bn(n1), alpha, beta);
// We are done with the last task for the [m1, n1] block.
if (k + 1 == nk_) {
output_kernel_(output_mapper, tensor_contraction_params_, m1 * bm_, n1 * bn_, bm(m1), bn(n1));
}
}
}
} else {
for (Index m1 = m * gm_; m1 < mend; m1++)
for (Index n1 = n * gn_; n1 < nend; n1++) {
const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
kernel_.invoke(output_mapper, packed_lhs(m, k, m1, !shard_by_col_ && use_thread_local),
packed_rhs(n, k, n1, shard_by_col_ && use_thread_local), bm(m1), bk(k), bn(n1), alpha, beta);
// We are done with the last task for the [m1, n1] block.
if (k + 1 == nk_) {
output_kernel_(output_mapper, tensor_contraction_params_, m1 * bm_, n1 * bn_, bm(m1), bn(n1));
}
}
}
signal_kernel(m, n, k + 1, /*sync=*/false, /*use_thread_local=*/false);
signal_switch(k + 2);
}
void signal_packing(Index k) {
eigen_assert(!parallel_pack_);
Index s = state_packing_ready_[k % P].fetch_sub(1);
eigen_assert(s > 0);
if (s != 1) return;
state_packing_ready_[k % P] = shard_by_col_ ? nm_ : nn_;
enqueue_packing(k, shard_by_col_);
}
void signal_kernel(Index m, Index n, Index k, bool sync, bool use_thread_local) {
std::atomic<uint8_t>* state = &state_kernel_[k % P][m][n];
Index s = state->load();
eigen_assert(s > 0);
if (s != 1 && state->fetch_sub(1) != 1) {
eigen_assert(!use_thread_local);
return;
}
state->store(parallel_pack_ ? 3 : 2, std::memory_order_relaxed);
if (sync) {
kernel(m, n, k, use_thread_local);
} else {
eigen_assert(!use_thread_local);
device_.enqueueNoNotification([=]() { kernel(m, n, k, use_thread_local); });
}
}
void signal_switch(Index k, Index v = 1) {
Index s = state_switch_[k % P].fetch_sub(v);
eigen_assert(s >= v);
if (s != v) return;
// Ready to switch to the next k slice.
// Reset counter for the next iteration.
state_switch_[k % P] = (parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)) + nm_ * nn_;
if (k < nk_) {
// Issue lhs/rhs packing. Their completion will in turn kick off
// kernels.
if (parallel_pack_) {
enqueue_packing(k, !shard_by_col_);
enqueue_packing(k, shard_by_col_);
} else if (shard_by_col_) {
enqueue_packing(k, false);
} else {
enqueue_packing(k, true);
}
// Termination handling.
// Because kernel completion signals k + 2 switch, we need to finish nk
// + 2 slices without issuing any tasks on nk + 1 slice. So here we
// pretend that all nk + 1 packing tasks just finish instantly; so that
// nk + 2 switch only waits for completion of nk kernels.
} else if (k == nk_) {
signal_switch(k + 1, parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_));
} else {
done_.Notify();
}
}
// Enqueue all rhs/lhs packing for k-th slice.
void enqueue_packing(Index k, bool rhs) { enqueue_packing_helper(0, rhs ? nn_ : nm_, k, rhs); }
void enqueue_packing_helper(Index start, Index end, Index k, bool rhs) {
if (end - start == 1) {
if (rhs)
pack_rhs(start, k);
else
pack_lhs(start, k);
} else {
while (end - start > 1) {
Index mid = (start + end) / 2;
device_.enqueueNoNotification([=]() { enqueue_packing_helper(mid, end, k, rhs); });
end = mid;
}
// Decide if we want to run first packing task (start == 0) in
// async mode if we parallelize only by sharding dim:
// (1) pack_lhs and pack_rhs call signal_switch before completing
// all calls to signal_kernel, which in sync mode might lead
// to the execution of the first kernel of the k+1 slice, before
// completing a call to the last kernel of the k slice.
// (2) all pack tasks for sharded dim must be executed in a thread
// pool to get pre-allocated thead local buffers.
bool pack_async = (start == 0) && (parallelize_by_sharding_dim_only_ && shard_by_col_ == rhs) &&
(k > 0 || std::this_thread::get_id() == created_by_thread_id_);
if (pack_async) {
device_.enqueueNoNotification([=]() { enqueue_packing_helper(start, end, k, rhs); });
} else {
enqueue_packing_helper(start, end, k, rhs);
}
}
}
// Block sizes with accounting for potentially incomplete last block.
Index bm(Index m) const { return m + 1 < nm0_ ? bm_ : m_ + bm_ - bm_ * nm0_; }
Index bn(Index n) const { return n + 1 < nn0_ ? bn_ : n_ + bn_ - bn_ * nn0_; }
Index bk(Index k) const { return k + 1 < nk_ ? bk_ : k_ + bk_ - bk_ * nk_; }
// Task grain sizes accounting for potentially incomplete last task.
Index gm(Index m) const { return m + 1 < nm_ ? gm_ : nm0_ + gm_ - gm_ * nm_; }
Index gn(Index n) const { return n + 1 < nn_ ? gn_ : nn0_ + gn_ - gn_ * nn_; }
EvalParallelContext(const EvalParallelContext&) = delete;
void operator=(const EvalParallelContext&) = delete;
};
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
using SyncEvalParallelContext = EvalParallelContext<NoCallback, lhs_inner_dim_contiguous, rhs_inner_dim_contiguous,
rhs_inner_dim_reordered, Alignment>;
// ------------------------------------------------------------------------ //
// EvalShardedByInnerDimContext orchestrates sync/async contraction
// evaluation, when we shard by inner dimension. When it is executed in
// asynchronous mode, it owns all the shared state that might be accessible by
// block processing tasks.
template <typename DoneCallback>
struct EvalShardedByInnerDimContext {
EvalShardedByInnerDimContext(const Self* self, int num_threads, Scalar* result_buffer, Index m_size, Index n_size,
Index k_size, DoneCallback done_callback)
: evaluator(self),
m_lhs_inner_dim_contiguous(evaluator->m_lhs_inner_dim_contiguous),
m_rhs_inner_dim_contiguous(evaluator->m_rhs_inner_dim_contiguous),
m_rhs_inner_dim_reordered(evaluator->m_rhs_inner_dim_reordered),
result(result_buffer),
m(m_size),
n(n_size),
k(k_size),
done(std::move(done_callback)),
buffer_size_bytes(m * n * sizeof(Scalar)),
block_size(blockSize(k, num_threads)),
num_blocks(numext::div_ceil<Index>(k, block_size)),
num_pending_blocks(internal::convert_index<int>(num_blocks)),
l0_ranges(numext::div_ceil<Index>(num_blocks, l0_size)),
l0_state(l0_ranges),
block_buffers(num_blocks) {
// Keep count of pending gemm tasks for each l0 range.
for (int i = 0; i < l0_ranges; ++i) {
const Index num_pending_tasks = actualRangeSize(l0_ranges, l0_size, i);
l0_state.emplace_back(internal::convert_index<int>(num_pending_tasks));
}
// Allocate temporary buffers for each block.
for (Index block_idx = 0; block_idx < num_blocks; ++block_idx) {
Scalar* buf = block_idx == 0 ? result : static_cast<Scalar*>(evaluator->m_device.allocate(buffer_size_bytes));
block_buffers.emplace_back(buf);
}
}
~EvalShardedByInnerDimContext() {
for (Index i = 1; i < num_blocks; ++i) {
evaluator->m_device.deallocate(block_buffers[i]);
}
}
template <int Alignment>
void run() {
Barrier barrier(internal::convert_index<int>(num_blocks));
eval<Alignment>(barrier, 0, num_blocks);
barrier.Wait();
// Aggregate partial sums from l0 ranges.
aggregateL0Blocks<Alignment>();
// Apply output kernel.
applyOutputKernel();
}
template <int Alignment>
void runAsync() {
evalAsync<Alignment>(0, num_blocks);
}
private:
// The underlying GEMM kernel assumes that k is a multiple of
// the packet size and subtle breakage occurs if this is violated.
static const Index packet_size = internal::packet_traits<RhsScalar>::size;
const Self* evaluator; // TensorContraction evaluator
// These fields required fromTENSOR_CONTRACTION_DISPATCH macro.
bool m_lhs_inner_dim_contiguous;
bool m_rhs_inner_dim_contiguous;
bool m_rhs_inner_dim_reordered;
Scalar* result;
Index m;
Index n;
Index k;
DoneCallback done;
// ----------------------------------------------------------------------//
// Algorithm parameters.
// We will compute partial results into the buffers of this size.
Index buffer_size_bytes;
Index block_size;
Index num_blocks;
// Keep track of pending tasks when evaluate in async mode.
std::atomic<int> num_pending_blocks;
// We compute partial gemm results in parallel, and to get the final result
// we need to add them all together. For the large number of threads (>= 48)
// this adds a very expensive sequential step at the end.
//
// We split the [0, num_blocks) into small ranges, and when a task for the
// block finishes its partial gemm computation, it checks if it was the last
// gemm in the range, and if so, it will add all blocks of the range.
//
// After all tasks done, we need to add only these pre-aggregated blocks.
// For now we use just a single level of ranges to compute pre-aggregated
// partial sums, but in general we can use more layers to compute tree
// aggregation in parallel and reduce the size of the sequential step.
//
// TODO(ezhulenev): Add multilevel tree aggregation? Probably will make
// sense only if number of threads >= ~128?
static const Index l0_size = 4;
Index l0_ranges;
// Keep count of pending gemm tasks for each l0 range.
MaxSizeVector<std::atomic<int>> l0_state; // [0, l0_ranges)
// Buffers allocated for each temporary block computation.
MaxSizeVector<Scalar*> block_buffers; // [0, num_blocks)
template <int Alignment>
void processBlock(Index block_idx, Index begin, Index end) {
Scalar* buf = block_buffers[block_idx];
TENSOR_CONTRACTION_DISPATCH(evaluator->template evalGemmPartialWithoutOutputKernel, Alignment,
(buf, begin, end,
/*num_threads=*/internal::convert_index<int>(num_blocks)));
// Check if it was the last task in l0 range.
const Index l0_index = block_idx / l0_size;
const int v = l0_state[l0_index].fetch_sub(1);
eigen_assert(v >= 1);
// If we processed the last block of the range, we can aggregate all
// partial results into the first block of the range.
if (v == 1) {
const Index rng_size = actualRangeSize(l0_ranges, l0_size, l0_index);
const Index dst_block_idx = l0_index * l0_size;
if (rng_size == l0_size) {
addAllToBuffer<Alignment>(m * n,
/*src_buf0=*/block_buffers[dst_block_idx + 1],
/*src_buf1=*/block_buffers[dst_block_idx + 2],
/*src_buf2=*/block_buffers[dst_block_idx + 3],
/*dst_buf= */ block_buffers[dst_block_idx]);
} else {
// Aggregate blocks of potentially incomplete last range.
for (int i = 1; i < rng_size; ++i) {
addToBuffer<Alignment>(m * n,
/*src_buf=*/block_buffers[dst_block_idx + i],
/*dst_buf=*/block_buffers[dst_block_idx]);
}
}
}
}
// Aggregate partial sums from l0 ranges.
template <int Alignment>
void aggregateL0Blocks() const {
Index l0_index = 1;
for (; l0_index + 2 < l0_ranges; l0_index += 3) {
addAllToBuffer<Alignment>(m * n,
/*src_buf0=*/block_buffers[(l0_index + 0) * l0_size],
/*src_buf1=*/block_buffers[(l0_index + 1) * l0_size],
/*src_buf2=*/block_buffers[(l0_index + 2) * l0_size],
/*dst_buf= */ block_buffers[0]);
}
for (; l0_index < l0_ranges; ++l0_index) {
addToBuffer<Alignment>(m * n, block_buffers[l0_index * l0_size], block_buffers[0]);
}
}
void applyOutputKernel() const {
typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
evaluator->m_output_kernel(OutputMapper(result, m), evaluator->m_tensor_contraction_params,
static_cast<Eigen::Index>(0), static_cast<Eigen::Index>(0), m, n);
}
// Compute block size with accounting for potentially incomplete last block.
Index actualBlockSize(Index block_idx) const {
return block_idx + 1 < num_blocks ? block_size : k + block_size - block_size * num_blocks;
};
// Compute range size with accounting for potentially incomplete last range.
Index actualRangeSize(Index num_ranges, Index range_size, Index range_idx) const {
eigen_assert(range_idx < num_ranges);
return range_idx + 1 < num_ranges ? range_size : num_blocks + range_size - range_size * num_ranges;
};
template <int Alignment>
EIGEN_STRONG_INLINE static void addToBuffer(size_t n, const Scalar* src_buf, Scalar* tgt_buf) {
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
size_t i = 0;
const size_t num_packets = n / output_packet_size;
for (; i < output_packet_size * num_packets; i += output_packet_size) {
const PacketReturnType src_val = internal::pload<PacketReturnType>(src_buf + i);
const PacketReturnType tgt_val = internal::ploadt<PacketReturnType, Alignment>(tgt_buf + i);
const PacketReturnType sum = internal::padd(src_val, tgt_val);
internal::pstoret<Scalar, PacketReturnType, Alignment>(tgt_buf + i, sum);
}
for (; i < n; ++i) {
tgt_buf[i] += src_buf[i];
}
}
template <int Alignment>
EIGEN_STRONG_INLINE static void addAllToBuffer(size_t n, const Scalar* src_buf0, const Scalar* src_buf1,
const Scalar* src_buf2, Scalar* dst_buf) {
using ::Eigen::internal::padd;
using ::Eigen::internal::pload;
using ::Eigen::internal::ploadt;
using ::Eigen::internal::pstoret;
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
size_t i = 0;
const size_t num_packets = n / output_packet_size;
for (; i < output_packet_size * num_packets; i += output_packet_size) {
const auto src_val0 = pload<PacketReturnType>(src_buf0 + i);
const auto src_val1 = pload<PacketReturnType>(src_buf1 + i);
const auto src_val2 = pload<PacketReturnType>(src_buf2 + i);
const auto dst_val = ploadt<PacketReturnType, Alignment>(dst_buf + i);
const auto sum = padd(padd(dst_val, src_val0), padd(src_val1, src_val2));
pstoret<Scalar, PacketReturnType, Alignment>(dst_buf + i, sum);
}
for (; i < n; ++i) {
dst_buf[i] += src_buf0[i] + src_buf1[i] + src_buf2[i];
}
}
template <int Alignment>
void eval(Barrier& barrier, Index start_block_idx, Index end_block_idx) {
while (end_block_idx - start_block_idx > 1) {
Index mid_block_idx = (start_block_idx + end_block_idx) / 2;
evaluator->m_device.enqueueNoNotification([this, &barrier, mid_block_idx, end_block_idx]() {
eval<Alignment>(barrier, mid_block_idx, end_block_idx);
});
end_block_idx = mid_block_idx;
}
Index block_idx = start_block_idx;
Index block_start = block_idx * block_size;
Index block_end = block_start + actualBlockSize(block_idx);
processBlock<Alignment>(block_idx, block_start, block_end);
barrier.Notify();
}
template <int Alignment>
void evalAsync(Index start_block_idx, Index end_block_idx) {
while (end_block_idx - start_block_idx > 1) {
Index mid_block_idx = (start_block_idx + end_block_idx) / 2;
evaluator->m_device.enqueueNoNotification(
[this, mid_block_idx, end_block_idx]() { evalAsync<Alignment>(mid_block_idx, end_block_idx); });
end_block_idx = mid_block_idx;
}
Index block_idx = start_block_idx;
Index block_start = block_idx * block_size;
Index block_end = block_start + actualBlockSize(block_idx);
processBlock<Alignment>(block_idx, block_start, block_end);
int v = num_pending_blocks.fetch_sub(1);
eigen_assert(v >= 1);
if (v == 1) {
// Aggregate partial sums from l0 ranges.
aggregateL0Blocks<Alignment>();
// Apply output kernel.
applyOutputKernel();
// NOTE: If we call `done` callback before deleting this (context),
// it might deallocate Self* pointer captured by context, and we'll
// fail in destructor trying to deallocate temporary buffers.
// Move done call back from context before it will be destructed.
DoneCallback done_copy = std::move(done);
// We are confident that we are the last one who touches context.
delete this;
// Now safely call the done callback.
done_copy();
}
}
// Cost model doesn't capture well the cost associated with constructing
// tensor contraction mappers and computing loop bounds in gemm_pack_lhs
// and gemm_pack_rhs, so we specify minimum desired block size.
static Index blockSize(Index k, int num_threads) {
const auto round_up = [=](Index index) -> Index {
const Index kmultiple = packet_size <= 8 ? 8 : packet_size;
return numext::div_ceil<Index>(index, kmultiple) * kmultiple;
};
const Index target_block_size = round_up(numext::div_ceil<Index>(k, num_threads));
const Index desired_min_block_size = 12 * packet_size;
return numext::mini<Index>(k, numext::maxi<Index>(desired_min_block_size, target_block_size));
}
EvalShardedByInnerDimContext(const EvalShardedByInnerDimContext&) = delete;
void operator=(const EvalShardedByInnerDimContext&) = delete;
};
// ------------------------------------------------------------------------ //
// Below are the function used by evalProductImpl heuristics, trying to select
// optimcal parameters for parallelization algorithm.
// Decide whether we want to shard m x n contraction by columns or by rows.
static bool shardByCol(Index m, Index n, Index num_threads) {
// Note: we are comparing both n and m against Traits::nr, it is not
// a mistake. We are trying to figure out how both n and m will fit into
// the main sharding dimension.
// Sharding by column is the default
// ... unless there is enough data for vectorization over rows
if (m / num_threads >= Traits::nr &&
// and not enough data for vectorization over columns
(n / num_threads < Traits::nr ||
// ... or barely enough data for vectorization over columns,
// but it is not evenly dividable across threads
(n / num_threads < 4 * Traits::nr && (n % (num_threads * Traits::nr)) != 0 &&
// ... and it is evenly dividable across threads for rows
((m % (num_threads * Traits::nr)) == 0 ||
// .. or it is not evenly dividable for both dimensions but
// there is much more data over rows so that corner effects are
// mitigated.
(m / n >= 6)))))
return false;
// Wait, or if matrices are just substantially prolonged over the other
// dimension.
if (n / num_threads < 16 * Traits::nr && m > n * 32) return false;
return true;
}
Index coarsenM(Index m, Index n, Index bm, Index bn, Index bk, Index gn, int num_threads, bool shard_by_col) const {
Index gm = 1;
Index gm1 = 1;
Index nm0 = numext::div_ceil(m, bm);
Index nm1 = nm0;
for (;;) {
// Find the next candidate for m grain size. It needs to result in
// different number of blocks. E.g. if we have 10 kernels, we want to try
// 5 and 10, but not 6, 7, 8 and 9.
while (gm1 <= nm0 && nm1 == numext::div_ceil(nm0, gm1)) gm1++;
if (gm1 > nm0) break;
// Check the candidate.
int res = checkGrain(m, n, bm, bn, bk, gm1, gn, gm, gn, num_threads, shard_by_col);
if (res < 0) break;
nm1 = numext::div_ceil(nm0, gm1);
if (res == 0) continue;
// Commit new grain size.
gm = gm1;
}
return gm;
}
Index coarsenN(Index m, Index n, Index bm, Index bn, Index bk, Index gm, int num_threads, bool shard_by_col) const {
Index gn = 1;
Index gn1 = 1;
Index nn0 = numext::div_ceil(n, bn);
Index nn1 = nn0;
for (;;) {
while (gn1 <= nn0 && nn1 == numext::div_ceil(nn0, gn1)) gn1++;
if (gn1 > nn0) break;
int res = checkGrain(m, n, bm, bn, bk, gm, gn1, gm, gn, num_threads, shard_by_col);
if (res < 0) break;
nn1 = numext::div_ceil(nn0, gn1);
if (res == 0) continue;
gn = gn1;
}
return gn;
}
// checkGrain checks whether grain (gm, gn) is suitable and is better than
// (oldgm, oldgn).
int checkGrain(Index m, Index n, Index bm, Index bn, Index bk, Index gm, Index gn, Index oldgm, Index oldgn,
int num_threads, bool shard_by_col) const {
const TensorOpCost cost = contractionCost(bm * gm, bn * gn, bm, bn, bk, shard_by_col, true);
double taskSize = TensorCostModel<ThreadPoolDevice>::taskSize(static_cast<double>(bm) * gm * bn * gn, cost);
// If the task is too small, then we agree on it regardless of anything
// else. Otherwise synchronization overheads will dominate.
if (taskSize < 1) return 1;
// If it is too large, then we reject it and all larger tasks.
if (taskSize > 2) return -1;
// Now we are in presumably good task size range.
// The main deciding factor here is parallelism. Consider that we have 12
// kernels and 4 threads. Grains of 2, 3 and 4 all yield good task sizes.
// But 2/4 yield 6/3 tasks, which gives us parallelism of 0.75 (at most 3/4
// of cores will be busy). While grain size 3 gives us 4 tasks, which gives
// us parallelism of 1 (we can load all cores).
Index nm0 = numext::div_ceil(m, bm);
Index nn0 = numext::div_ceil(n, bn);
Index new_tasks = numext::div_ceil(nm0, gm) * numext::div_ceil(nn0, gn);
double new_parallelism =
static_cast<double>(new_tasks) / (numext::div_ceil<Index>(new_tasks, num_threads) * num_threads);
Index old_tasks = numext::div_ceil(nm0, oldgm) * numext::div_ceil(nn0, oldgn);
double old_parallelism =
static_cast<double>(old_tasks) / (numext::div_ceil<Index>(old_tasks, num_threads) * num_threads);
if (new_parallelism > old_parallelism || new_parallelism == 1) return 1;
return 0;
}
TensorOpCost contractionCost(Index m, Index n, Index bm, Index bn, Index bk, bool shard_by_col,
bool prepacked) const {
const int packed_size = std::min<int>(PacketType<LhsScalar, Device>::size, PacketType<RhsScalar, Device>::size);
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
const double kd = static_cast<double>(bk);
double compute_bandwidth = computeBandwidth(false, bm, bn, bk);
// Computations.
TensorOpCost cost = TensorOpCost(0, 0, kd * compute_bandwidth, true, packed_size);
// Output stores.
cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
if (prepacked) {
// Packing and kernels are executed in different tasks. When we calculate
// task grain size we look only at kernel cost assuming that kernel
// is more expensive than packing.
return cost;
}
// Lhs/rhs loads + computations.
TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * (kd / n);
TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * (kd / m);
// Lhs packing memory cost does not contribute considerably to overall
// execution time because lhs is prefetched early and accessed sequentially.
if (shard_by_col)
lhsCost.dropMemoryCost();
else
rhsCost.dropMemoryCost();
return cost + lhsCost + rhsCost;
}
// Decide whether we want to shard m x k x n contraction over the inner
// (contraction) dimension (k).
static bool shardByInnerDim(Index m, Index n, Index k, int num_threads, int num_threads_by_k) {
std::ptrdiff_t bufsize = m * n * sizeof(Scalar);
bool shard_by_k = false;
if (n == 1 || // If mat*vec or...
num_threads_by_k < 2 || // running single threaded or...
num_threads_by_k < num_threads || // sharding by k gives less parallelism or...
bufsize > l3CacheSize() / num_threads_by_k || // need more buffer space
// than L3 cache or...
k / num_threads_by_k < 2 * Traits::nr) { // k per thread is tiny.
shard_by_k = false;
} else if (numext::maxi(m, n) / num_threads < Traits::nr || // both other dimensions are tiny or...
// k per thread is not small and...
(k / num_threads_by_k > 8 * Traits::nr &&
// one of the outer dimensions is tiny or sharding by k offers
// more parallelism.
(numext::mini(m, n) < 2 * Traits::nr || num_threads_by_k > num_threads))) {
shard_by_k = true;
}
return shard_by_k;
}
TensorOpCost contractionCostPerInnerDim(Index m, Index n, Index k) const {
// Compute cost.
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
TensorOpCost cost(0, 0, (computeBandwidth(true, m, n, k) * m) * n, true, output_packet_size);
// Output stores.
cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * m;
TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * n;
// Since the inner gemm kernel is always sharded by column, the lhs
// load cost is negligible.
lhsCost.dropMemoryCost();
return cost + lhsCost + rhsCost;
}
int numThreadsInnerDim(Index m, Index n, Index k) const {
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
TensorOpCost cost = contractionCostPerInnerDim(m, n, k);
double total_parallel_cost = TensorCostModel<ThreadPoolDevice>::totalCost(k, cost);
// Cost of reduction step accumulating the m*n per-thread buffers into the
// result.
double reduction_cost =
TensorCostModel<ThreadPoolDevice>::totalCost(m * n, TensorOpCost(2, 1, 1, true, output_packet_size));
int num_threads = 1;
double min_cost = total_parallel_cost;
double kPerThreadOverHead = 3000;
double kFixedOverHead = 100000;
for (int nt = 2; nt <= this->m_device.numThreads(); nt += 2) {
double sequential_cost = kFixedOverHead + nt * (reduction_cost + kPerThreadOverHead);
double parallel_cost = total_parallel_cost / nt + sequential_cost;
if (parallel_cost < min_cost) {
num_threads = nt;
min_cost = parallel_cost;
}
}
return num_threads;
}
double computeBandwidth(bool shard_by_col, Index bm, Index bn, Index bk) const {
// Peak VFMA bandwidth is 0.5. However if we have not enough data for
// vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined
// experimentally.
double computeBandwidth = bk == 1 ? 4.0
: (shard_by_col ? bn : bm) < Traits::nr || (shard_by_col ? bm : bn) < Traits::mr ? 2.0
: 0.5;
#ifndef EIGEN_VECTORIZE_FMA
// Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors.
// However for MULPS/ADDPS we have dependent sequence of 2 such
// instructions,
// so overall bandwidth is 1.0.
if (computeBandwidth == 0.5) computeBandwidth = 1.0;
#endif
return computeBandwidth;
}
};
} // end namespace Eigen
#endif // EIGEN_USE_THREADS
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H