| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \class TensorConversionOp |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief Tensor conversion class. This class makes it possible to vectorize |
| * type casting operations when the number of scalars per packet in the source |
| * and the destination type differ |
| */ |
| namespace internal { |
| template <typename TargetType, typename XprType> |
| struct traits<TensorConversionOp<TargetType, XprType> > { |
| // Type promotion to handle the case where the types of the lhs and the rhs are different. |
| typedef TargetType Scalar; |
| typedef typename traits<XprType>::StorageKind StorageKind; |
| typedef typename traits<XprType>::Index Index; |
| typedef typename XprType::Nested Nested; |
| typedef std::remove_reference_t<Nested> Nested_; |
| static constexpr int NumDimensions = traits<XprType>::NumDimensions; |
| static constexpr int Layout = traits<XprType>::Layout; |
| enum { Flags = 0 }; |
| typedef typename TypeConversion<Scalar, typename traits<XprType>::PointerType>::type PointerType; |
| }; |
| |
| template <typename TargetType, typename XprType> |
| struct eval<TensorConversionOp<TargetType, XprType>, Eigen::Dense> { |
| typedef const TensorConversionOp<TargetType, XprType>& type; |
| }; |
| |
| template <typename TargetType, typename XprType> |
| struct nested<TensorConversionOp<TargetType, XprType>, 1, |
| typename eval<TensorConversionOp<TargetType, XprType> >::type> { |
| typedef TensorConversionOp<TargetType, XprType> type; |
| }; |
| |
| } // end namespace internal |
| |
| template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio> |
| struct PacketConverter; |
| |
| template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket> |
| struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 1, 1> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl) {} |
| |
| template <int LoadMode, typename Index> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { |
| return internal::pcast<SrcPacket, TgtPacket>(m_impl.template packet<LoadMode>(index)); |
| } |
| |
| private: |
| const TensorEvaluator& m_impl; |
| }; |
| |
| template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket> |
| struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 2, 1> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl) {} |
| |
| template <int LoadMode, typename Index> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { |
| const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; |
| |
| SrcPacket src1 = m_impl.template packet<LoadMode>(index); |
| SrcPacket src2 = m_impl.template packet<LoadMode>(index + SrcPacketSize); |
| TgtPacket result = internal::pcast<SrcPacket, TgtPacket>(src1, src2); |
| return result; |
| } |
| |
| private: |
| const TensorEvaluator& m_impl; |
| }; |
| |
| template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket> |
| struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 4, 1> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl) {} |
| |
| template <int LoadMode, typename Index> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { |
| const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; |
| |
| SrcPacket src1 = m_impl.template packet<LoadMode>(index); |
| SrcPacket src2 = m_impl.template packet<LoadMode>(index + SrcPacketSize); |
| SrcPacket src3 = m_impl.template packet<LoadMode>(index + 2 * SrcPacketSize); |
| SrcPacket src4 = m_impl.template packet<LoadMode>(index + 3 * SrcPacketSize); |
| TgtPacket result = internal::pcast<SrcPacket, TgtPacket>(src1, src2, src3, src4); |
| return result; |
| } |
| |
| private: |
| const TensorEvaluator& m_impl; |
| }; |
| |
| template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket> |
| struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 8, 1> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl) {} |
| |
| template <int LoadMode, typename Index> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { |
| const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; |
| |
| SrcPacket src1 = m_impl.template packet<LoadMode>(index); |
| SrcPacket src2 = m_impl.template packet<LoadMode>(index + 1 * SrcPacketSize); |
| SrcPacket src3 = m_impl.template packet<LoadMode>(index + 2 * SrcPacketSize); |
| SrcPacket src4 = m_impl.template packet<LoadMode>(index + 3 * SrcPacketSize); |
| SrcPacket src5 = m_impl.template packet<LoadMode>(index + 4 * SrcPacketSize); |
| SrcPacket src6 = m_impl.template packet<LoadMode>(index + 5 * SrcPacketSize); |
| SrcPacket src7 = m_impl.template packet<LoadMode>(index + 6 * SrcPacketSize); |
| SrcPacket src8 = m_impl.template packet<LoadMode>(index + 7 * SrcPacketSize); |
| TgtPacket result = internal::pcast<SrcPacket, TgtPacket>(src1, src2, src3, src4, src5, src6, src7, src8); |
| return result; |
| } |
| |
| private: |
| const TensorEvaluator& m_impl; |
| }; |
| |
| template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket, int TgtCoeffRatio> |
| struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 1, TgtCoeffRatio> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) |
| : m_impl(impl), m_maxIndex(impl.dimensions().TotalSize()) {} |
| |
| template <int LoadMode, typename Index> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { |
| const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; |
| // Only call m_impl.packet() when we have direct access to the underlying data. This |
| // ensures that we don't compute the subexpression twice. We may however load some |
| // coefficients twice, but in practice this doesn't negatively impact performance. |
| if (m_impl.data() && (index + SrcPacketSize < m_maxIndex)) { |
| // Force unaligned memory loads since we can't ensure alignment anymore |
| return internal::pcast<SrcPacket, TgtPacket>(m_impl.template packet<Unaligned>(index)); |
| } else { |
| const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; |
| typedef typename internal::unpacket_traits<SrcPacket>::type SrcType; |
| typedef typename internal::unpacket_traits<TgtPacket>::type TgtType; |
| internal::scalar_cast_op<SrcType, TgtType> converter; |
| EIGEN_ALIGN_MAX typename internal::unpacket_traits<TgtPacket>::type values[TgtPacketSize]; |
| EIGEN_UNROLL_LOOP |
| for (int i = 0; i < TgtPacketSize; ++i) { |
| values[i] = converter(m_impl.coeff(index + i)); |
| } |
| TgtPacket rslt = internal::pload<TgtPacket>(values); |
| return rslt; |
| } |
| } |
| |
| private: |
| const TensorEvaluator& m_impl; |
| const typename TensorEvaluator::Index m_maxIndex; |
| }; |
| |
| template <typename TargetType, typename XprType> |
| class TensorConversionOp : public TensorBase<TensorConversionOp<TargetType, XprType>, ReadOnlyAccessors> { |
| public: |
| typedef typename internal::traits<TensorConversionOp>::Scalar Scalar; |
| typedef typename internal::traits<TensorConversionOp>::StorageKind StorageKind; |
| typedef typename internal::traits<TensorConversionOp>::Index Index; |
| typedef typename internal::nested<TensorConversionOp>::type Nested; |
| typedef Scalar CoeffReturnType; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConversionOp(const XprType& xpr) : m_xpr(xpr) {} |
| |
| EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; } |
| |
| protected: |
| typename XprType::Nested m_xpr; |
| }; |
| |
| template <bool SameType, typename Eval, typename EvalPointerType> |
| struct ConversionSubExprEval { |
| static EIGEN_STRONG_INLINE bool run(Eval& impl, EvalPointerType) { |
| impl.evalSubExprsIfNeeded(NULL); |
| return true; |
| } |
| }; |
| |
| template <typename Eval, typename EvalPointerType> |
| struct ConversionSubExprEval<true, Eval, EvalPointerType> { |
| static EIGEN_STRONG_INLINE bool run(Eval& impl, EvalPointerType data) { return impl.evalSubExprsIfNeeded(data); } |
| }; |
| |
| #ifdef EIGEN_USE_THREADS |
| template <bool SameType, typename Eval, typename EvalPointerType, typename EvalSubExprsCallback> |
| struct ConversionSubExprEvalAsync { |
| static EIGEN_STRONG_INLINE void run(Eval& impl, EvalPointerType, EvalSubExprsCallback done) { |
| impl.evalSubExprsIfNeededAsync(nullptr, std::move(done)); |
| } |
| }; |
| |
| template <typename Eval, typename EvalPointerType, typename EvalSubExprsCallback> |
| struct ConversionSubExprEvalAsync<true, Eval, EvalPointerType, EvalSubExprsCallback> { |
| static EIGEN_STRONG_INLINE void run(Eval& impl, EvalPointerType data, EvalSubExprsCallback done) { |
| impl.evalSubExprsIfNeededAsync(data, std::move(done)); |
| } |
| }; |
| #endif |
| |
| namespace internal { |
| |
| template <typename SrcType, typename TargetType, bool IsSameT> |
| struct CoeffConv { |
| template <typename ArgType, typename Device> |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetType run(const TensorEvaluator<ArgType, Device>& impl, |
| Index index) { |
| internal::scalar_cast_op<SrcType, TargetType> converter; |
| return converter(impl.coeff(index)); |
| } |
| }; |
| |
| template <typename SrcType, typename TargetType> |
| struct CoeffConv<SrcType, TargetType, true> { |
| template <typename ArgType, typename Device> |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetType run(const TensorEvaluator<ArgType, Device>& impl, |
| Index index) { |
| return impl.coeff(index); |
| } |
| }; |
| |
| template <typename SrcPacket, typename TargetPacket, int LoadMode, bool ActuallyVectorize, bool IsSameT> |
| struct PacketConv { |
| typedef typename internal::unpacket_traits<SrcPacket>::type SrcType; |
| typedef typename internal::unpacket_traits<TargetPacket>::type TargetType; |
| |
| static constexpr int PacketSize = internal::unpacket_traits<TargetPacket>::size; |
| |
| template <typename ArgType, typename Device> |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetPacket run(const TensorEvaluator<ArgType, Device>& impl, |
| Index index) { |
| internal::scalar_cast_op<SrcType, TargetType> converter; |
| EIGEN_ALIGN_MAX std::remove_const_t<TargetType> values[PacketSize]; |
| EIGEN_UNROLL_LOOP |
| for (int i = 0; i < PacketSize; ++i) { |
| values[i] = converter(impl.coeff(index + i)); |
| } |
| TargetPacket rslt = internal::pload<TargetPacket>(values); |
| return rslt; |
| } |
| }; |
| |
| template <typename SrcPacket, typename TargetPacket, int LoadMode, bool IsSameT> |
| struct PacketConv<SrcPacket, TargetPacket, LoadMode, true, IsSameT> { |
| typedef typename internal::unpacket_traits<SrcPacket>::type SrcType; |
| typedef typename internal::unpacket_traits<TargetPacket>::type TargetType; |
| |
| template <typename ArgType, typename Device> |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetPacket run(const TensorEvaluator<ArgType, Device>& impl, |
| Index index) { |
| const int SrcCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::SrcCoeffRatio; |
| const int TgtCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::TgtCoeffRatio; |
| PacketConverter<TensorEvaluator<ArgType, Device>, SrcPacket, TargetPacket, SrcCoeffRatio, TgtCoeffRatio> converter( |
| impl); |
| return converter.template packet<LoadMode>(index); |
| } |
| }; |
| |
| template <typename SrcPacket, typename TargetPacket, int LoadMode> |
| struct PacketConv<SrcPacket, TargetPacket, LoadMode, /*ActuallyVectorize=*/false, /*IsSameT=*/true> { |
| typedef typename internal::unpacket_traits<TargetPacket>::type TargetType; |
| static constexpr int PacketSize = internal::unpacket_traits<TargetPacket>::size; |
| |
| template <typename ArgType, typename Device> |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetPacket run(const TensorEvaluator<ArgType, Device>& impl, |
| Index index) { |
| EIGEN_ALIGN_MAX std::remove_const_t<TargetType> values[PacketSize]; |
| for (int i = 0; i < PacketSize; ++i) values[i] = impl.coeff(index + i); |
| return internal::pload<TargetPacket>(values); |
| } |
| }; |
| |
| template <typename SrcPacket, typename TargetPacket, int LoadMode> |
| struct PacketConv<SrcPacket, TargetPacket, LoadMode, /*ActuallyVectorize=*/true, /*IsSameT=*/true> { |
| template <typename ArgType, typename Device> |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetPacket run(const TensorEvaluator<ArgType, Device>& impl, |
| Index index) { |
| return impl.template packet<LoadMode>(index); |
| } |
| }; |
| |
| } // namespace internal |
| |
| // Eval as rvalue |
| template <typename TargetType, typename ArgType, typename Device> |
| struct TensorEvaluator<const TensorConversionOp<TargetType, ArgType>, Device> { |
| typedef TensorConversionOp<TargetType, ArgType> XprType; |
| typedef typename XprType::Index Index; |
| typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; |
| typedef TargetType Scalar; |
| typedef TargetType CoeffReturnType; |
| typedef internal::remove_all_t<typename internal::traits<ArgType>::Scalar> SrcType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| typedef typename PacketType<SrcType, Device>::type PacketSourceType; |
| static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size; |
| static constexpr bool IsSameType = internal::is_same<TargetType, SrcType>::value; |
| typedef StorageMemory<CoeffReturnType, Device> Storage; |
| typedef typename Storage::Type EvaluatorPointerType; |
| |
| enum { |
| IsAligned = false, |
| PacketAccess = |
| #ifndef EIGEN_USE_SYCL |
| true, |
| #else |
| TensorEvaluator<ArgType, Device>::PacketAccess & |
| internal::type_casting_traits<SrcType, TargetType>::VectorizedCast, |
| #endif |
| BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess, |
| PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, |
| RawAccess = false |
| }; |
| |
| static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout; |
| static constexpr int NumDims = internal::array_size<Dimensions>::value; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; |
| typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; |
| |
| typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock ArgTensorBlock; |
| |
| struct TensorConversionOpBlockFactory { |
| template <typename ArgXprType> |
| struct XprType { |
| typedef TensorConversionOp<TargetType, const ArgXprType> type; |
| }; |
| |
| template <typename ArgXprType> |
| typename XprType<ArgXprType>::type expr(const ArgXprType& expr) const { |
| return typename XprType<ArgXprType>::type(expr); |
| } |
| }; |
| |
| typedef internal::TensorUnaryExprBlock<TensorConversionOpBlockFactory, ArgTensorBlock> TensorBlock; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_impl.dimensions(); } |
| |
| EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { |
| return ConversionSubExprEval<IsSameType, TensorEvaluator<ArgType, Device>, EvaluatorPointerType>::run(m_impl, data); |
| } |
| |
| #ifdef EIGEN_USE_THREADS |
| template <typename EvalSubExprsCallback> |
| EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType data, EvalSubExprsCallback done) { |
| ConversionSubExprEvalAsync<IsSameType, TensorEvaluator<ArgType, Device>, EvaluatorPointerType, |
| EvalSubExprsCallback>::run(m_impl, data, std::move(done)); |
| } |
| #endif |
| |
| EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { |
| return internal::CoeffConv<SrcType, TargetType, IsSameType>::run(m_impl, index); |
| } |
| |
| template <int LoadMode> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { |
| // If we are not going to do the cast, we just need to check that base |
| // TensorEvaluator has packet access. Otherwise we also need to make sure, |
| // that we have an implementation of vectorized cast. |
| const bool Vectorizable = IsSameType ? TensorEvaluator<ArgType, Device>::PacketAccess |
| : int(TensorEvaluator<ArgType, Device>::PacketAccess) & |
| int(internal::type_casting_traits<SrcType, TargetType>::VectorizedCast); |
| |
| return internal::PacketConv<PacketSourceType, PacketReturnType, LoadMode, Vectorizable, IsSameType>::run(m_impl, |
| index); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { |
| const double cast_cost = TensorOpCost::CastCost<SrcType, TargetType>(); |
| if (vectorized) { |
| const double SrcCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::SrcCoeffRatio; |
| const double TgtCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::TgtCoeffRatio; |
| return m_impl.costPerCoeff(vectorized) * (SrcCoeffRatio / PacketSize) + |
| TensorOpCost(0, 0, TgtCoeffRatio * (cast_cost / PacketSize)); |
| } else { |
| return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, cast_cost); |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const { |
| return m_impl.getResourceRequirements(); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch, |
| bool /*root_of_expr_ast*/ = false) const { |
| return TensorBlock(m_impl.block(desc, scratch), TensorConversionOpBlockFactory()); |
| } |
| |
| EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } |
| |
| /// required by sycl in order to extract the sycl accessor |
| const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } |
| |
| protected: |
| TensorEvaluator<ArgType, Device> m_impl; |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H |