blob: 88ae9f4bb5b4c28aaa7c6126bc591bd40ce7d25b [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_SYCL_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_SYCL_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \class TensorConvolution
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor convolution class.
*
*
*/
enum class convolution_type { CONV1D, CONV2D, CONV3D };
template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims,
typename Kernel_accessor, typename Buffer_accessor, convolution_type Conv_Dim>
struct EigenConvolutionKernel;
template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims,
typename Kernel_accessor, typename Buffer_accessor>
struct EigenConvolutionKernel<Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor,
Buffer_accessor, convolution_type::CONV1D> {
typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local>
Local_accessor;
Local_accessor local_acc;
Evaluator device_evaluator;
Kernel_accessor kernel_filter;
Buffer_accessor buffer_acc;
internal::IndexMapper<Index, InputDims, 1, Evaluator::Layout> indexMapper;
const size_t kernelSize;
const cl::sycl::range<2> input_range;
EigenConvolutionKernel(Local_accessor local_acc_, Evaluator device_evaluator_, Kernel_accessor kernel_filter_,
Buffer_accessor buffer_acc_,
internal::IndexMapper<Index, InputDims, 1, Evaluator::Layout> indexMapper_,
const size_t kernelSize_, const cl::sycl::range<2> input_range_)
: local_acc(local_acc_),
device_evaluator(device_evaluator_),
kernel_filter(kernel_filter_),
buffer_acc(buffer_acc_),
indexMapper(indexMapper_),
kernelSize(kernelSize_),
input_range(input_range_) {}
template <typename BooleanDim2>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool boundary_check(const BooleanDim2 boolean_check) const {
return (boolean_check[0] && boolean_check[1]);
}
void operator()(cl::sycl::nd_item<2> itemID) const {
auto buffer_ptr = buffer_acc;
auto kernel_ptr = kernel_filter;
// the required row to be calculated for the for each plane in shered memory
const size_t num_input = (itemID.get_local_range()[0] + kernelSize - 1);
const size_t plane_kernel_offset = itemID.get_local_id(1) * num_input;
const size_t input_offset = itemID.get_group(0) * itemID.get_local_range()[0];
const size_t plane_tensor_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(itemID.get_global_id(1));
/// fill the shared memory
for (size_t i = itemID.get_local_id(0); i < num_input; i += itemID.get_local_range()[0]) {
const size_t local_index = i + plane_kernel_offset;
const size_t tensor_index =
plane_tensor_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i + input_offset);
local_acc[local_index] =
(((i + input_offset) < (input_range[0] + kernelSize - 1)) && itemID.get_global_id(1) < input_range[1])
? device_evaluator.coeff(tensor_index)
: CoeffReturnType(0);
}
itemID.barrier(cl::sycl::access::fence_space::local_space);
// calculate the convolution // output start x
const size_t first_output_start = itemID.get_group(0) * (itemID.get_local_range()[0]);
if (boundary_check(itemID.get_global_id() < input_range)) {
CoeffReturnType result = static_cast<CoeffReturnType>(0);
const size_t index = plane_kernel_offset + itemID.get_local_id(0);
for (size_t k = 0; k < kernelSize; ++k) {
result += (local_acc[k + index] * kernel_ptr[k]);
}
const size_t tensor_index =
indexMapper.mapGpuOutputPlaneToTensorOutputOffset(itemID.get_global_id(1)) +
indexMapper.mapGpuOutputKernelToTensorOutputOffset(itemID.get_local_id(0) + first_output_start);
buffer_ptr[tensor_index] = result;
}
}
};
template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims,
typename Kernel_accessor, typename Buffer_accessor>
struct EigenConvolutionKernel<Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor,
Buffer_accessor, convolution_type::CONV2D> {
typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local>
Local_accessor;
Local_accessor local_acc;
Evaluator device_evaluator;
Kernel_accessor kernel_filter;
Buffer_accessor buffer_acc;
internal::IndexMapper<Index, InputDims, 2, Evaluator::Layout> indexMapper;
const cl::sycl::range<2> kernel_size;
const cl::sycl::range<3> input_range;
EigenConvolutionKernel(Local_accessor local_acc_, Evaluator device_evaluator_, Kernel_accessor kernel_filter_,
Buffer_accessor buffer_acc_,
internal::IndexMapper<Index, InputDims, 2, Evaluator::Layout> indexMapper_,
const cl::sycl::range<2> kernel_size_, const cl::sycl::range<3> input_range_)
: local_acc(local_acc_),
device_evaluator(device_evaluator_),
kernel_filter(kernel_filter_),
buffer_acc(buffer_acc_),
indexMapper(indexMapper_),
kernel_size(kernel_size_),
input_range(input_range_) {}
template <typename BooleanDim3>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool boundary_check(const BooleanDim3 boolean_check) const {
return (boolean_check[0] && boolean_check[1] && boolean_check[2]);
}
void operator()(cl::sycl::nd_item<3> itemID) const {
auto buffer_ptr = buffer_acc;
auto kernel_ptr = kernel_filter;
// the required row to be calculated for the for each plane in shered memory
const auto num_input = cl::sycl::range<2>{
(cl::sycl::range<2>(itemID.get_local_range()[0], itemID.get_local_range()[1]) + kernel_size - 1)};
const size_t plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(itemID.get_global_id(2));
const size_t plane_kernel_offset = itemID.get_local_id(2) * num_input[1];
const auto input_offset = cl::sycl::range<2>{itemID.get_group(0) * itemID.get_local_range()[0],
itemID.get_group(1) * itemID.get_local_range()[1]};
// fill the local memory
bool in_range_dim2 = itemID.get_global_id(2) < input_range[2];
for (size_t j = itemID.get_local_id(1); j < num_input[1]; j += itemID.get_local_range()[1]) {
const size_t local_input_offset = num_input[0] * (j + plane_kernel_offset);
bool in_range_dim1 = ((j + input_offset[1]) < (input_range[1] + kernel_size[1] - 1));
for (size_t i = itemID.get_local_id(0); i < num_input[0]; i += itemID.get_local_range()[0]) {
const size_t local_index = i + local_input_offset;
const size_t tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(
i + input_offset[0], j + input_offset[1]);
local_acc[local_index] =
(((i + input_offset[0]) < (input_range[0] + kernel_size[0] - 1)) && in_range_dim1 && in_range_dim2)
? device_evaluator.coeff(tensor_index)
: CoeffReturnType(0);
}
}
itemID.barrier(cl::sycl::access::fence_space::local_space);
// output offset start for each thread
const auto output_offset = cl::sycl::range<2>{itemID.get_group(0) * itemID.get_local_range()[0],
itemID.get_group(1) * itemID.get_local_range()[1]};
if (boundary_check(itemID.get_global_id() < input_range)) {
CoeffReturnType result = static_cast<CoeffReturnType>(0);
for (size_t j = 0; j < kernel_size[1]; j++) {
size_t kernel_offset = kernel_size[0] * j;
const size_t index =
(num_input[0] * (plane_kernel_offset + j + itemID.get_local_id(1))) + itemID.get_local_id(0);
for (size_t i = 0; i < kernel_size[0]; i++) {
result += (local_acc[i + index] * kernel_ptr[i + kernel_offset]);
}
}
const size_t tensor_index =
indexMapper.mapGpuOutputPlaneToTensorOutputOffset(itemID.get_global_id(2)) +
indexMapper.mapGpuOutputKernelToTensorOutputOffset(itemID.get_local_id(0) + output_offset[0],
itemID.get_local_id(1) + output_offset[1]);
buffer_ptr[tensor_index] = result;
}
}
};
template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims,
typename Kernel_accessor, typename Buffer_accessor>
struct EigenConvolutionKernel<Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor,
Buffer_accessor, convolution_type::CONV3D> {
typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local>
Local_accessor;
Local_accessor local_acc;
Evaluator device_evaluator;
Kernel_accessor kernel_filter;
Buffer_accessor buffer_acc;
internal::IndexMapper<Index, InputDims, 3, Evaluator::Layout> indexMapper;
const cl::sycl::range<3> kernel_size;
const cl::sycl::range<3> input_range;
const size_t numP;
EigenConvolutionKernel(Local_accessor local_acc_, Evaluator device_evaluator_, Kernel_accessor kernel_filter_,
Buffer_accessor buffer_acc_,
internal::IndexMapper<Index, InputDims, 3, Evaluator::Layout> indexMapper_,
const cl::sycl::range<3> kernel_size_, const cl::sycl::range<3> input_range_,
const size_t numP_)
: local_acc(local_acc_),
device_evaluator(device_evaluator_),
kernel_filter(kernel_filter_),
buffer_acc(buffer_acc_),
indexMapper(indexMapper_),
kernel_size(kernel_size_),
input_range(input_range_),
numP(numP_) {}
template <typename BooleanDim3>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool boundary_check(const BooleanDim3 boolean_check) const {
return (boolean_check[0] && boolean_check[1] && boolean_check[2]);
}
void operator()(cl::sycl::nd_item<3> itemID) const {
auto buffer_ptr = buffer_acc;
auto kernel_ptr = kernel_filter;
const auto num_input = cl::sycl::range<3>{itemID.get_local_range() + kernel_size - 1};
const auto input_offset = cl::sycl::range<3>{itemID.get_group().get_id() * itemID.get_local_range()};
const auto output_offset =
cl::sycl::range<3>{itemID.get_group().get_id() * itemID.get_local_range() + itemID.get_local_id()};
for (size_t p = 0; p < numP; p++) {
/// fill the shared memory
const size_t plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
for (size_t k = itemID.get_local_id(2); k < num_input[2]; k += itemID.get_local_range()[2]) {
size_t local_index_dim2 = num_input[0] * num_input[1] * k;
bool cond_k_dim = (k + input_offset[2] < (input_range[2] + kernel_size[2] - 1));
for (size_t j = itemID.get_local_id(1); j < num_input[1]; j += itemID.get_local_range()[1]) {
bool cond_j_dim = cond_k_dim && (j + input_offset[1] < (input_range[1] + kernel_size[1] - 1));
size_t local_index_dim1 = (num_input[0] * j) + local_index_dim2;
for (size_t i = itemID.get_local_id(0); i < num_input[0]; i += itemID.get_local_range()[0]) {
bool conds = cond_j_dim && (i + input_offset[0] < (input_range[0] + kernel_size[0] - 1));
const size_t local_index = local_index_dim1 + i;
const size_t tensor_index =
plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(
i + input_offset[0], j + input_offset[1], k + input_offset[2]);
local_acc[local_index] = conds ? device_evaluator.coeff(tensor_index) : CoeffReturnType(0);
}
}
}
itemID.barrier(cl::sycl::access::fence_space::local_space);
// calculate the convolution
if (boundary_check(itemID.get_global_id() < input_range)) {
CoeffReturnType result = static_cast<CoeffReturnType>(0);
for (size_t k = 0; k < kernel_size[2]; k++) {
for (size_t j = 0; j < kernel_size[1]; j++) {
for (size_t i = 0; i < kernel_size[0]; i++) {
const size_t kernel_index = i + kernel_size[0] * (j + kernel_size[1] * k);
const size_t local_index =
((i + itemID.get_local_id(0)) +
num_input[0] * ((j + itemID.get_local_id(1)) + num_input[1] * (k + itemID.get_local_id(2))));
result += (local_acc[local_index] * kernel_ptr[kernel_index]);
}
}
}
const size_t tensor_index =
indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p) +
indexMapper.mapGpuOutputKernelToTensorOutputOffset(output_offset[0], output_offset[1], output_offset[2]);
buffer_ptr[tensor_index] = result;
}
itemID.barrier(cl::sycl::access::fence_space::local_space);
}
}
};
template <typename Indices, typename InputArgType, typename KernelArgType>
struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, Eigen::SyclDevice> {
typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
static constexpr int NumDims =
internal::array_size<typename TensorEvaluator<InputArgType, Eigen::SyclDevice>::Dimensions>::value;
static constexpr int NumKernelDims = internal::array_size<Indices>::value;
typedef typename XprType::Index Index;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename TensorEvaluator<KernelArgType, Eigen::SyclDevice>::Dimensions KernelDimensions;
typedef const Eigen::SyclDevice Device;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Eigen::SyclDevice>::type PacketReturnType;
typedef typename InputArgType::Scalar Scalar;
static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
typedef StorageMemory<CoeffReturnType, Eigen::SyclDevice> Storage;
typedef typename Storage::Type EvaluatorPointerType;
typedef StorageMemory<const CoeffReturnType, Eigen::SyclDevice> KernelStorage;
static constexpr int Layout = TensorEvaluator<InputArgType, Eigen::SyclDevice>::Layout;
enum {
IsAligned = TensorEvaluator<InputArgType, Eigen::SyclDevice>::IsAligned &
TensorEvaluator<KernelArgType, Eigen::SyclDevice>::IsAligned,
PacketAccess = false,
BlockAccess = false,
PreferBlockAccess = false,
CoordAccess = false, // to be implemented
RawAccess = false
};
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlock;
//===--------------------------------------------------------------------===//
TensorEvaluator(const XprType &op, const Eigen::SyclDevice &device)
: m_inputImpl(op.inputExpression(), device),
m_kernelArg(op.kernelExpression()),
m_kernelImpl(op.kernelExpression(), device),
m_indices(op.indices()),
m_buf(NULL),
m_kernel(NULL),
m_local_kernel(false),
m_device(device) {
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, Eigen::SyclDevice>::Layout) ==
static_cast<int>(TensorEvaluator<KernelArgType, Eigen::SyclDevice>::Layout)),
YOU_MADE_A_PROGRAMMING_MISTAKE);
const typename TensorEvaluator<InputArgType, Eigen::SyclDevice>::Dimensions &input_dims = m_inputImpl.dimensions();
const typename TensorEvaluator<KernelArgType, Eigen::SyclDevice>::Dimensions &kernel_dims =
m_kernelImpl.dimensions();
m_dimensions = m_inputImpl.dimensions();
for (int i = 0; i < NumKernelDims; ++i) {
const Index index = op.indices()[i];
const Index input_dim = input_dims[index];
const Index kernel_dim = kernel_dims[i];
const Index result_dim = input_dim - kernel_dim + 1;
m_dimensions[index] = result_dim;
}
}
EIGEN_DEVICE_FUNC const Dimensions &dimensions() const { return m_dimensions; }
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
preloadKernel();
m_inputImpl.evalSubExprsIfNeeded(NULL);
if (data) {
executeEval(data);
return false;
} else {
m_buf = (EvaluatorPointerType)m_device.get(
(Scalar *)m_device.allocate_temp(dimensions().TotalSize() * sizeof(Scalar)));
executeEval(m_buf);
return true;
}
}
EIGEN_STRONG_INLINE void cleanup() {
m_inputImpl.cleanup();
if (m_buf) {
m_device.deallocate_temp(m_buf);
m_buf = NULL;
}
if (m_local_kernel) {
m_device.deallocate_temp(m_kernel);
m_local_kernel = false;
}
m_kernel = NULL;
}
/// used by sycl in order to build the sycl buffer
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device &device() const { return m_device; }
/// used by sycl in order to build the sycl buffer
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return m_buf; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void preloadKernel() {
// Don't make a local copy of the kernel unless we have to (i.e. it's an
// expression that needs to be evaluated)
typename KernelStorage::Type in_place = m_kernelImpl.data();
if (in_place) {
m_kernel = in_place;
m_local_kernel = false;
} else {
ptrdiff_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
EvaluatorPointerType local = (EvaluatorPointerType)m_device.get((Scalar *)m_device.allocate_temp(kernel_sz));
typedef TensorEvalToOp<const KernelArgType> EvalTo;
EvalTo evalToTmp(m_device.get(local), m_kernelArg);
const bool PacketAccess = internal::IsVectorizable<Eigen::SyclDevice, KernelArgType>::value;
internal::TensorExecutor<const EvalTo, Eigen::SyclDevice, PacketAccess>::run(evalToTmp, m_device);
m_kernel = local;
m_local_kernel = true;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void executeEval(EvaluatorPointerType data) const {
typedef TensorEvaluator<InputArgType, Eigen::SyclDevice> InputEvaluator;
typedef typename InputEvaluator::Dimensions InputDims;
switch (NumKernelDims) {
case 1: {
const size_t numX = dimensions()[m_indices[0]];
const size_t numP = dimensions().TotalSize() / numX;
const auto input_dim = std::array<size_t, 2>{numX, numP};
auto global_range = cl::sycl::range<2>{1, 1};
auto local_range = cl::sycl::range<2>{1, 1};
const size_t kernel_size = m_kernelImpl.dimensions().TotalSize();
m_device.parallel_for_setup(input_dim, global_range, local_range);
const size_t local_memory_size = (local_range[0] + kernel_size - 1) * (local_range[1]);
gpu_assert(static_cast<unsigned long>(local_memory_size) <= m_device.sharedMemPerBlock());
const array<Index, 1> indices{{m_indices[0]}};
const array<Index, 1> kernel_dims{{m_kernelImpl.dimensions()[0]}};
internal::IndexMapper<Index, InputDims, 1, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
typedef EigenConvolutionKernel<InputEvaluator, CoeffReturnType, Scalar, Index, InputDims,
typename KernelStorage::Type, EvaluatorPointerType, convolution_type::CONV1D>
ConvKernel;
m_device
.template binary_kernel_launcher<CoeffReturnType, ConvKernel>(
m_inputImpl, m_kernel, data, cl::sycl::nd_range<2>(global_range, local_range), local_memory_size,
indexMapper, kernel_size, cl::sycl::range<2>(input_dim[0], input_dim[1]))
.wait();
break;
}
case 2: {
auto kernel_index = std::array<size_t, 2>{static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 1,
static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 0};
auto kernel_size = cl::sycl::range<2>{(size_t)m_kernelImpl.dimensions()[kernel_index[0]],
(size_t)m_kernelImpl.dimensions()[kernel_index[1]]};
const size_t numX = dimensions()[m_indices[kernel_index[0]]];
const size_t numY = dimensions()[m_indices[kernel_index[1]]];
const size_t numP = dimensions().TotalSize() / (numX * numY);
auto input_dim = std::array<size_t, 3>{numX, numY, numP};
auto global_range = cl::sycl::range<3>{1, 1, 1};
auto local_range = cl::sycl::range<3>{1, 1, 1};
m_device.parallel_for_setup(input_dim, global_range, local_range);
const size_t local_memory_size =
(local_range[0] + kernel_size[0] - 1) * (local_range[1] + kernel_size[1] - 1) * local_range[2];
gpu_assert(static_cast<unsigned long>(local_memory_size) <= m_device.sharedMemPerBlock());
const array<Index, 2> indices{{m_indices[kernel_index[0]], m_indices[kernel_index[1]]}};
const array<Index, 2> kernel_dims{
{m_kernelImpl.dimensions()[kernel_index[0]], m_kernelImpl.dimensions()[kernel_index[1]]}};
internal::IndexMapper<Index, InputDims, 2, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
typedef EigenConvolutionKernel<InputEvaluator, CoeffReturnType, Scalar, Index, InputDims,
typename KernelStorage::Type, EvaluatorPointerType, convolution_type::CONV2D>
ConvKernel;
m_device
.template binary_kernel_launcher<CoeffReturnType, ConvKernel>(
m_inputImpl, m_kernel, data, cl::sycl::nd_range<3>(global_range, local_range), local_memory_size,
indexMapper, kernel_size, cl::sycl::range<3>{input_dim[0], input_dim[1], input_dim[2]})
.wait();
break;
}
case 3: {
auto kernel_index = std::array<size_t, 3>{static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 2,
static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 1,
static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 0};
auto kernel_size = cl::sycl::range<3>{(size_t)m_kernelImpl.dimensions()[kernel_index[0]],
(size_t)m_kernelImpl.dimensions()[kernel_index[1]],
(size_t)m_kernelImpl.dimensions()[kernel_index[2]]};
const size_t numX = dimensions()[m_indices[kernel_index[0]]];
const size_t numY = dimensions()[m_indices[kernel_index[1]]];
const size_t numZ = dimensions()[m_indices[kernel_index[2]]];
auto input_dim = std::array<size_t, 3>{numX, numY, numZ};
const size_t numP = dimensions().TotalSize() / (numX * numY * numZ);
const array<Index, 3> indices{
{m_indices[kernel_index[0]], m_indices[kernel_index[1]], m_indices[kernel_index[2]]}};
const array<Index, 3> kernel_dims{{m_kernelImpl.dimensions()[kernel_index[0]],
m_kernelImpl.dimensions()[kernel_index[1]],
m_kernelImpl.dimensions()[kernel_index[2]]}};
internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
auto global_range = cl::sycl::range<3>{1, 1, 1};
auto local_range = cl::sycl::range<3>{1, 1, 1};
m_device.parallel_for_setup(input_dim, global_range, local_range);
auto local_memory_range = (local_range + kernel_size - 1);
const size_t local_memory_size = local_memory_range[0] * local_memory_range[1] * local_memory_range[2];
gpu_assert(static_cast<unsigned long>(local_memory_size) <= m_device.sharedMemPerBlock());
typedef EigenConvolutionKernel<InputEvaluator, CoeffReturnType, Scalar, Index, InputDims,
typename KernelStorage::Type, EvaluatorPointerType, convolution_type::CONV3D>
ConvKernel;
m_device
.template binary_kernel_launcher<CoeffReturnType, ConvKernel>(
m_inputImpl, m_kernel, data, cl::sycl::nd_range<3>(global_range, local_range), local_memory_size,
indexMapper, kernel_size, cl::sycl::range<3>(input_dim[0], input_dim[1], input_dim[2]), numP)
.wait();
break;
}
default: {
EIGEN_STATIC_ASSERT((NumKernelDims >= 1 && NumKernelDims <= 3),
THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE);
}
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
eigen_assert(m_buf != NULL);
eigen_assert(index < m_dimensions.TotalSize());
return m_buf[index];
}
template <int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const {
eigen_assert(m_buf != NULL);
eigen_assert(index < m_dimensions.TotalSize());
return internal::ploadt<PacketReturnType, LoadMode>(m_buf + index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
// TODO(rmlarsen): FIXME: For now, this is just a copy of the CPU cost
// model.
const double kernel_size = m_kernelImpl.dimensions().TotalSize();
// We ignore the use of fused multiply-add.
const double convolve_compute_cost = TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
const double firstIndex_compute_cost =
NumDims *
(2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>());
return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
kernel_size * (m_inputImpl.costPerCoeff(vectorized) + m_kernelImpl.costPerCoeff(vectorized) +
TensorOpCost(0, 0, convolve_compute_cost, vectorized, PacketSize));
}
private:
// No assignment (copies are needed by the kernels)
TensorEvaluator &operator=(const TensorEvaluator &);
TensorEvaluator<InputArgType, Eigen::SyclDevice> m_inputImpl;
KernelArgType m_kernelArg;
TensorEvaluator<KernelArgType, Eigen::SyclDevice> m_kernelImpl;
Indices m_indices;
Dimensions m_dimensions;
EvaluatorPointerType m_buf;
typename KernelStorage::Type m_kernel;
bool m_local_kernel;
const Eigen::SyclDevice EIGEN_DEVICE_REF m_device;
}; // namespace Eigen
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H