blob: 4c24bc1f0a9c7c0798bfe05a68471a73f78afab0 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(EIGEN_USE_GPU) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_GPU_H)
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_GPU_H
// This header file container defines fo gpu* macros which will resolve to
// their equivalent hip* or cuda* versions depending on the compiler in use
// A separate header (included at the end of this file) will undefine all
#include "TensorGpuHipCudaDefines.h"
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
static const int kGpuScratchSize = 1024;
// This defines an interface that GPUDevice can take to use
// HIP / CUDA streams underneath.
class StreamInterface {
public:
virtual ~StreamInterface() {}
virtual const gpuStream_t& stream() const = 0;
virtual const gpuDeviceProp_t& deviceProperties() const = 0;
// Allocate memory on the actual device where the computation will run
virtual void* allocate(size_t num_bytes) const = 0;
virtual void deallocate(void* buffer) const = 0;
// Return a scratchpad buffer of size 1k
virtual void* scratchpad() const = 0;
// Return a semaphore. The semaphore is initially initialized to 0, and
// each kernel using it is responsible for resetting to 0 upon completion
// to maintain the invariant that the semaphore is always equal to 0 upon
// each kernel start.
virtual unsigned int* semaphore() const = 0;
};
class GpuDeviceProperties {
public:
GpuDeviceProperties() : initialized_(false), first_(true), device_properties_(nullptr) {}
~GpuDeviceProperties() {
if (device_properties_) {
delete[] device_properties_;
}
}
EIGEN_STRONG_INLINE const gpuDeviceProp_t& get(int device) const { return device_properties_[device]; }
EIGEN_STRONG_INLINE bool isInitialized() const { return initialized_; }
void initialize() {
if (!initialized_) {
// Attempts to ensure proper behavior in the case of multiple threads
// calling this function simultaneously. This would be trivial to
// implement if we could use std::mutex, but unfortunately mutex don't
// compile with nvcc, so we resort to atomics and thread fences instead.
// Note that if the caller uses a compiler that doesn't support c++11 we
// can't ensure that the initialization is thread safe.
if (first_.exchange(false)) {
// We're the first thread to reach this point.
int num_devices;
gpuError_t status = gpuGetDeviceCount(&num_devices);
if (status != gpuSuccess) {
std::cerr << "Failed to get the number of GPU devices: " << gpuGetErrorString(status) << std::endl;
gpu_assert(status == gpuSuccess);
}
device_properties_ = new gpuDeviceProp_t[num_devices];
for (int i = 0; i < num_devices; ++i) {
status = gpuGetDeviceProperties(&device_properties_[i], i);
if (status != gpuSuccess) {
std::cerr << "Failed to initialize GPU device #" << i << ": " << gpuGetErrorString(status) << std::endl;
gpu_assert(status == gpuSuccess);
}
}
std::atomic_thread_fence(std::memory_order_release);
initialized_ = true;
} else {
// Wait for the other thread to inititialize the properties.
while (!initialized_) {
std::atomic_thread_fence(std::memory_order_acquire);
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
}
}
}
}
private:
volatile bool initialized_;
std::atomic<bool> first_;
gpuDeviceProp_t* device_properties_;
};
EIGEN_ALWAYS_INLINE const GpuDeviceProperties& GetGpuDeviceProperties() {
static GpuDeviceProperties* deviceProperties = new GpuDeviceProperties();
if (!deviceProperties->isInitialized()) {
deviceProperties->initialize();
}
return *deviceProperties;
}
EIGEN_ALWAYS_INLINE const gpuDeviceProp_t& GetGpuDeviceProperties(int device) {
return GetGpuDeviceProperties().get(device);
}
static const gpuStream_t default_stream = gpuStreamDefault;
class GpuStreamDevice : public StreamInterface {
public:
// Use the default stream on the current device
GpuStreamDevice() : stream_(&default_stream), scratch_(NULL), semaphore_(NULL) {
gpuError_t status = gpuGetDevice(&device_);
if (status != gpuSuccess) {
std::cerr << "Failed to get the GPU devices " << gpuGetErrorString(status) << std::endl;
gpu_assert(status == gpuSuccess);
}
}
// Use the default stream on the specified device
GpuStreamDevice(int device) : stream_(&default_stream), device_(device), scratch_(NULL), semaphore_(NULL) {}
// Use the specified stream. Note that it's the
// caller responsibility to ensure that the stream can run on
// the specified device. If no device is specified the code
// assumes that the stream is associated to the current gpu device.
GpuStreamDevice(const gpuStream_t* stream, int device = -1)
: stream_(stream), device_(device), scratch_(NULL), semaphore_(NULL) {
if (device < 0) {
gpuError_t status = gpuGetDevice(&device_);
if (status != gpuSuccess) {
std::cerr << "Failed to get the GPU devices " << gpuGetErrorString(status) << std::endl;
gpu_assert(status == gpuSuccess);
}
} else {
int num_devices;
gpuError_t err = gpuGetDeviceCount(&num_devices);
EIGEN_UNUSED_VARIABLE(err)
gpu_assert(err == gpuSuccess);
gpu_assert(device < num_devices);
device_ = device;
}
}
virtual ~GpuStreamDevice() {
if (scratch_) {
deallocate(scratch_);
}
}
const gpuStream_t& stream() const { return *stream_; }
const gpuDeviceProp_t& deviceProperties() const { return GetGpuDeviceProperties(device_); }
virtual void* allocate(size_t num_bytes) const {
gpuError_t err = gpuSetDevice(device_);
EIGEN_UNUSED_VARIABLE(err)
gpu_assert(err == gpuSuccess);
void* result;
err = gpuMalloc(&result, num_bytes);
gpu_assert(err == gpuSuccess);
gpu_assert(result != NULL);
return result;
}
virtual void deallocate(void* buffer) const {
gpuError_t err = gpuSetDevice(device_);
EIGEN_UNUSED_VARIABLE(err)
gpu_assert(err == gpuSuccess);
gpu_assert(buffer != NULL);
err = gpuFree(buffer);
gpu_assert(err == gpuSuccess);
}
virtual void* scratchpad() const {
if (scratch_ == NULL) {
scratch_ = allocate(kGpuScratchSize + sizeof(unsigned int));
}
return scratch_;
}
virtual unsigned int* semaphore() const {
if (semaphore_ == NULL) {
char* scratch = static_cast<char*>(scratchpad()) + kGpuScratchSize;
semaphore_ = reinterpret_cast<unsigned int*>(scratch);
gpuError_t err = gpuMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_);
EIGEN_UNUSED_VARIABLE(err)
gpu_assert(err == gpuSuccess);
}
return semaphore_;
}
private:
const gpuStream_t* stream_;
int device_;
mutable void* scratch_;
mutable unsigned int* semaphore_;
};
struct GpuDevice {
// The StreamInterface is not owned: the caller is
// responsible for its initialization and eventual destruction.
explicit GpuDevice(const StreamInterface* stream) : stream_(stream), max_blocks_(INT_MAX) { eigen_assert(stream); }
explicit GpuDevice(const StreamInterface* stream, int num_blocks) : stream_(stream), max_blocks_(num_blocks) {
eigen_assert(stream);
}
// TODO(bsteiner): This is an internal API, we should not expose it.
EIGEN_STRONG_INLINE const gpuStream_t& stream() const { return stream_->stream(); }
EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const { return stream_->allocate(num_bytes); }
EIGEN_STRONG_INLINE void deallocate(void* buffer) const { stream_->deallocate(buffer); }
EIGEN_STRONG_INLINE void* allocate_temp(size_t num_bytes) const { return stream_->allocate(num_bytes); }
EIGEN_STRONG_INLINE void deallocate_temp(void* buffer) const { stream_->deallocate(buffer); }
template <typename Type>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Type get(Type data) const {
return data;
}
EIGEN_STRONG_INLINE void* scratchpad() const { return stream_->scratchpad(); }
EIGEN_STRONG_INLINE unsigned int* semaphore() const { return stream_->semaphore(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
#ifndef EIGEN_GPU_COMPILE_PHASE
gpuError_t err = gpuMemcpyAsync(dst, src, n, gpuMemcpyDeviceToDevice, stream_->stream());
EIGEN_UNUSED_VARIABLE(err)
gpu_assert(err == gpuSuccess);
#else
EIGEN_UNUSED_VARIABLE(dst);
EIGEN_UNUSED_VARIABLE(src);
EIGEN_UNUSED_VARIABLE(n);
eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
}
EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
gpuError_t err = gpuMemcpyAsync(dst, src, n, gpuMemcpyHostToDevice, stream_->stream());
EIGEN_UNUSED_VARIABLE(err)
gpu_assert(err == gpuSuccess);
}
EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
gpuError_t err = gpuMemcpyAsync(dst, src, n, gpuMemcpyDeviceToHost, stream_->stream());
EIGEN_UNUSED_VARIABLE(err)
gpu_assert(err == gpuSuccess);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
#ifndef EIGEN_GPU_COMPILE_PHASE
gpuError_t err = gpuMemsetAsync(buffer, c, n, stream_->stream());
EIGEN_UNUSED_VARIABLE(err)
gpu_assert(err == gpuSuccess);
#else
EIGEN_UNUSED_VARIABLE(buffer)
EIGEN_UNUSED_VARIABLE(c)
EIGEN_UNUSED_VARIABLE(n)
eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
}
template <typename T>
EIGEN_STRONG_INLINE void fill(T* begin, T* end, const T& value) const {
#ifndef EIGEN_GPU_COMPILE_PHASE
const size_t count = end - begin;
// Split value into bytes and run memset with stride.
const int value_size = sizeof(value);
char* buffer = (char*)begin;
char* value_bytes = (char*)(&value);
gpuError_t err;
EIGEN_UNUSED_VARIABLE(err)
// If all value bytes are equal, then a single memset can be much faster.
bool use_single_memset = true;
for (int i = 1; i < value_size; ++i) {
if (value_bytes[i] != value_bytes[0]) {
use_single_memset = false;
}
}
if (use_single_memset) {
err = gpuMemsetAsync(buffer, value_bytes[0], count * sizeof(T), stream_->stream());
gpu_assert(err == gpuSuccess);
} else {
for (int b = 0; b < value_size; ++b) {
err = gpuMemset2DAsync(buffer + b, value_size, value_bytes[b], 1, count, stream_->stream());
gpu_assert(err == gpuSuccess);
}
}
#else
EIGEN_UNUSED_VARIABLE(begin)
EIGEN_UNUSED_VARIABLE(end)
EIGEN_UNUSED_VARIABLE(value)
eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
}
EIGEN_STRONG_INLINE size_t numThreads() const {
// FIXME
return 32;
}
EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
// FIXME
return 48 * 1024;
}
EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
// We won't try to take advantage of the l2 cache for the time being, and
// there is no l3 cache on hip/cuda devices.
return firstLevelCacheSize();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void synchronize() const {
#ifndef EIGEN_GPU_COMPILE_PHASE
gpuError_t err = gpuStreamSynchronize(stream_->stream());
if (err != gpuSuccess) {
std::cerr << "Error detected in GPU stream: " << gpuGetErrorString(err) << std::endl;
gpu_assert(err == gpuSuccess);
}
#else
gpu_assert(false && "The default device should be used instead to generate kernel code");
#endif
}
EIGEN_STRONG_INLINE int getNumGpuMultiProcessors() const { return stream_->deviceProperties().multiProcessorCount; }
EIGEN_STRONG_INLINE int maxGpuThreadsPerBlock() const { return stream_->deviceProperties().maxThreadsPerBlock; }
EIGEN_STRONG_INLINE int maxGpuThreadsPerMultiProcessor() const {
return stream_->deviceProperties().maxThreadsPerMultiProcessor;
}
EIGEN_STRONG_INLINE int sharedMemPerBlock() const {
return static_cast<int>(stream_->deviceProperties().sharedMemPerBlock);
}
EIGEN_STRONG_INLINE int majorDeviceVersion() const { return stream_->deviceProperties().major; }
EIGEN_STRONG_INLINE int minorDeviceVersion() const { return stream_->deviceProperties().minor; }
EIGEN_STRONG_INLINE int maxBlocks() const { return max_blocks_; }
// This function checks if the GPU runtime recorded an error for the
// underlying stream device.
inline bool ok() const {
#ifdef EIGEN_GPUCC
gpuError_t error = gpuStreamQuery(stream_->stream());
return (error == gpuSuccess) || (error == gpuErrorNotReady);
#else
return false;
#endif
}
private:
const StreamInterface* stream_;
int max_blocks_;
};
#if defined(EIGEN_HIPCC)
#define LAUNCH_GPU_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
hipLaunchKernelGGL(kernel, dim3(gridsize), dim3(blocksize), (sharedmem), (device).stream(), __VA_ARGS__); \
gpu_assert(hipGetLastError() == hipSuccess);
#else
#define LAUNCH_GPU_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
(kernel)<<<(gridsize), (blocksize), (sharedmem), (device).stream()>>>(__VA_ARGS__); \
gpu_assert(cudaGetLastError() == cudaSuccess);
#endif
// FIXME: Should be device and kernel specific.
#ifdef EIGEN_GPUCC
static EIGEN_DEVICE_FUNC inline void setGpuSharedMemConfig(gpuSharedMemConfig config) {
#ifndef EIGEN_GPU_COMPILE_PHASE
gpuError_t status = gpuDeviceSetSharedMemConfig(config);
EIGEN_UNUSED_VARIABLE(status)
gpu_assert(status == gpuSuccess);
#else
EIGEN_UNUSED_VARIABLE(config)
#endif
}
#endif
} // end namespace Eigen
// undefine all the gpu* macros we defined at the beginning of the file
#include "TensorGpuHipCudaUndefines.h"
#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_GPU_H