| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_MAP_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_MAP_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| // FIXME use proper doxygen documentation (e.g. \tparam MakePointer_) |
| |
| /** \class TensorMap |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief A tensor expression mapping an existing array of data. |
| * |
| */ |
| /// `template <class> class MakePointer_` is added to convert the host pointer to the device pointer. |
| /// It is added due to the fact that for our device compiler `T*` is not allowed. |
| /// If we wanted to use the same Evaluator functions we have to convert that type to our pointer `T`. |
| /// This is done through our `MakePointer_` class. By default the Type in the `MakePointer_<T>` is `T*` . |
| /// Therefore, by adding the default value, we managed to convert the type and it does not break any |
| /// existing code as its default value is `T*`. |
| template <typename PlainObjectType, int Options_, template <class> class MakePointer_> |
| class TensorMap : public TensorBase<TensorMap<PlainObjectType, Options_, MakePointer_> > { |
| public: |
| typedef TensorMap<PlainObjectType, Options_, MakePointer_> Self; |
| typedef TensorBase<TensorMap<PlainObjectType, Options_, MakePointer_> > Base; |
| #ifdef EIGEN_USE_SYCL |
| typedef std::remove_reference_t<typename Eigen::internal::nested<Self>::type> Nested; |
| #else |
| typedef typename Eigen::internal::nested<Self>::type Nested; |
| #endif |
| typedef typename internal::traits<PlainObjectType>::StorageKind StorageKind; |
| typedef typename internal::traits<PlainObjectType>::Index Index; |
| typedef typename internal::traits<PlainObjectType>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef typename PlainObjectType::Base::CoeffReturnType CoeffReturnType; |
| |
| typedef typename MakePointer_<Scalar>::Type PointerType; |
| typedef typename MakePointer_<Scalar>::ConstType PointerConstType; |
| |
| // WARN: PointerType still can be a pointer to const (const Scalar*), for |
| // example in TensorMap<Tensor<const Scalar, ...>> expression. This type of |
| // expression should be illegal, but adding this restriction is not possible |
| // in practice (see https://bitbucket.org/eigen/eigen/pull-requests/488). |
| typedef std::conditional_t<bool(internal::is_lvalue<PlainObjectType>::value), |
| PointerType, // use simple pointer in lvalue expressions |
| PointerConstType // use const pointer in rvalue expressions |
| > |
| StoragePointerType; |
| |
| // If TensorMap was constructed over rvalue expression (e.g. const Tensor), |
| // we should return a reference to const from operator() (and others), even |
| // if TensorMap itself is not const. |
| typedef std::conditional_t<bool(internal::is_lvalue<PlainObjectType>::value), Scalar&, const Scalar&> StorageRefType; |
| |
| static constexpr int Options = Options_; |
| |
| static constexpr Index NumIndices = PlainObjectType::NumIndices; |
| typedef typename PlainObjectType::Dimensions Dimensions; |
| |
| static constexpr int Layout = PlainObjectType::Layout; |
| enum { IsAligned = ((int(Options_) & Aligned) == Aligned), CoordAccess = true, RawAccess = true }; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr) : m_data(dataPtr), m_dimensions() { |
| // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. |
| EIGEN_STATIC_ASSERT((0 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE) |
| } |
| |
| template <typename... IndexTypes> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr, Index firstDimension, |
| IndexTypes... otherDimensions) |
| : m_data(dataPtr), |
| m_dimensions(firstDimension, otherDimensions...){ |
| // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. |
| EIGEN_STATIC_ASSERT((sizeof...(otherDimensions) + 1 == NumIndices || NumIndices == Dynamic), |
| YOU_MADE_A_PROGRAMMING_MISTAKE)} |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr, |
| const array<Index, NumIndices>& dimensions) |
| : m_data(dataPtr), m_dimensions(dimensions) {} |
| |
| template <typename Dimensions> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr, const Dimensions& dimensions) |
| : m_data(dataPtr), m_dimensions(dimensions) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PlainObjectType& tensor) |
| : m_data(tensor.data()), m_dimensions(tensor.dimensions()) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return m_dimensions.rank(); } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(Index n) const { return m_dimensions[n]; } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_dimensions.TotalSize(); } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StoragePointerType data() { return m_data; } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StoragePointerType data() const { return m_data; } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageRefType operator()(const array<Index, NumIndices>& indices) const { |
| // eigen_assert(checkIndexRange(indices)); |
| if (PlainObjectType::Options & RowMajor) { |
| const Index index = m_dimensions.IndexOfRowMajor(indices); |
| return m_data[index]; |
| } else { |
| const Index index = m_dimensions.IndexOfColMajor(indices); |
| return m_data[index]; |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageRefType operator()() const { |
| EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return m_data[0]; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageRefType operator()(Index index) const { |
| eigen_internal_assert(index >= 0 && index < size()); |
| return m_data[index]; |
| } |
| |
| template <typename... IndexTypes> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageRefType operator()(Index firstIndex, Index secondIndex, |
| IndexTypes... otherIndices) const { |
| EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| eigen_assert(internal::all((Eigen::NumTraits<Index>::highest() >= otherIndices)...)); |
| if (PlainObjectType::Options & RowMajor) { |
| const Index index = |
| m_dimensions.IndexOfRowMajor(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); |
| return m_data[index]; |
| } else { |
| const Index index = |
| m_dimensions.IndexOfColMajor(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); |
| return m_data[index]; |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageRefType operator()(const array<Index, NumIndices>& indices) { |
| // eigen_assert(checkIndexRange(indices)); |
| if (PlainObjectType::Options & RowMajor) { |
| const Index index = m_dimensions.IndexOfRowMajor(indices); |
| return m_data[index]; |
| } else { |
| const Index index = m_dimensions.IndexOfColMajor(indices); |
| return m_data[index]; |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageRefType operator()() { |
| EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return m_data[0]; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageRefType operator()(Index index) { |
| eigen_internal_assert(index >= 0 && index < size()); |
| return m_data[index]; |
| } |
| |
| template <typename... IndexTypes> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageRefType operator()(Index firstIndex, Index secondIndex, |
| IndexTypes... otherIndices) { |
| static_assert(sizeof...(otherIndices) + 2 == NumIndices || NumIndices == Dynamic, |
| "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor."); |
| eigen_assert(internal::all((Eigen::NumTraits<Index>::highest() >= otherIndices)...)); |
| const std::size_t NumDims = sizeof...(otherIndices) + 2; |
| if (PlainObjectType::Options & RowMajor) { |
| const Index index = |
| m_dimensions.IndexOfRowMajor(array<Index, NumDims>{{firstIndex, secondIndex, otherIndices...}}); |
| return m_data[index]; |
| } else { |
| const Index index = |
| m_dimensions.IndexOfColMajor(array<Index, NumDims>{{firstIndex, secondIndex, otherIndices...}}); |
| return m_data[index]; |
| } |
| } |
| |
| EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorMap) |
| |
| private: |
| StoragePointerType m_data; |
| Dimensions m_dimensions; |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_MAP_H |