| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \class TensorReshaping |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief Tensor reshaping class. |
| * |
| * |
| */ |
| namespace internal { |
| template <typename NewDimensions, typename XprType> |
| struct traits<TensorReshapingOp<NewDimensions, XprType>> : public traits<XprType> { |
| typedef typename XprType::Scalar Scalar; |
| typedef traits<XprType> XprTraits; |
| typedef typename XprTraits::StorageKind StorageKind; |
| typedef typename XprTraits::Index Index; |
| typedef typename XprType::Nested Nested; |
| typedef std::remove_reference_t<Nested> Nested_; |
| static constexpr int NumDimensions = array_size<NewDimensions>::value; |
| static constexpr int Layout = XprTraits::Layout; |
| typedef typename XprTraits::PointerType PointerType; |
| }; |
| |
| template <typename NewDimensions, typename XprType> |
| struct eval<TensorReshapingOp<NewDimensions, XprType>, Eigen::Dense> { |
| typedef const TensorReshapingOp<NewDimensions, XprType> EIGEN_DEVICE_REF type; |
| }; |
| |
| template <typename NewDimensions, typename XprType> |
| struct nested<TensorReshapingOp<NewDimensions, XprType>, 1, |
| typename eval<TensorReshapingOp<NewDimensions, XprType>>::type> { |
| typedef TensorReshapingOp<NewDimensions, XprType> type; |
| }; |
| |
| } // end namespace internal |
| |
| template <typename NewDimensions, typename XprType> |
| class TensorReshapingOp : public TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors> { |
| public: |
| typedef TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors> Base; |
| typedef typename Eigen::internal::traits<TensorReshapingOp>::Scalar Scalar; |
| typedef std::remove_const_t<typename XprType::CoeffReturnType> CoeffReturnType; |
| typedef typename Eigen::internal::nested<TensorReshapingOp>::type Nested; |
| typedef typename Eigen::internal::traits<TensorReshapingOp>::StorageKind StorageKind; |
| typedef typename Eigen::internal::traits<TensorReshapingOp>::Index Index; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp(const XprType& expr, const NewDimensions& dims) |
| : m_xpr(expr), m_dims(dims) {} |
| |
| EIGEN_DEVICE_FUNC const NewDimensions& dimensions() const { return m_dims; } |
| |
| EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; } |
| |
| EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorReshapingOp) |
| |
| protected: |
| typename XprType::Nested m_xpr; |
| const NewDimensions m_dims; |
| }; |
| |
| // Eval as rvalue |
| template <typename NewDimensions, typename ArgType, typename Device> |
| struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> { |
| typedef TensorReshapingOp<NewDimensions, ArgType> XprType; |
| typedef NewDimensions Dimensions; |
| |
| typedef typename XprType::Index Index; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| typedef StorageMemory<CoeffReturnType, Device> Storage; |
| typedef typename Storage::Type EvaluatorPointerType; |
| typedef StorageMemory<std::remove_const_t<CoeffReturnType>, Device> ConstCastStorage; |
| |
| static constexpr int NumOutputDims = internal::array_size<Dimensions>::value; |
| static constexpr int NumInputDims = |
| internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; |
| |
| enum ReshapingKind { |
| // We do not use layout information to determine reshaping kind. |
| // Depending on the layout `N` can be inner or outer dimension. |
| OneByN = 0, // expr.reshape(1, N) |
| NByOne = 1, // expr.reshape(N, 1) |
| Runtime = 2 // Reshape dimensions are dynamic (specified at runtime). |
| }; |
| |
| // clang-format off |
| static const ReshapingKind kind = |
| (NumOutputDims == 2 && internal::index_statically_eq<NewDimensions>(/*index=*/0, /*value=*/1)) ? OneByN |
| : (NumOutputDims == 2 && internal::index_statically_eq<NewDimensions>(/*index=*/1, /*value=*/1)) ? NByOne |
| : Runtime; |
| // clang-format on |
| |
| static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout; |
| enum { |
| IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, |
| PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, |
| // For trivial reshapes with raw access to underlying data we will provide |
| // zero overhead block access. |
| // TODO(ezhulenev): Consider adding block access without raw access? |
| BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess && NumInputDims > 0 && NumOutputDims > 0, |
| PreferBlockAccess = false, |
| CoordAccess = false, // to be implemented |
| RawAccess = TensorEvaluator<ArgType, Device>::RawAccess |
| }; |
| |
| typedef std::remove_const_t<Scalar> ScalarNoConst; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockDescriptor<NumOutputDims, Index> TensorBlockDesc; |
| typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; |
| |
| typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumOutputDims, Layout, Index> TensorBlock; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) |
| : m_impl(op.expression(), device), m_dimensions(op.dimensions()) { |
| // The total size of the reshaped tensor must be equal to the total size |
| // of the input tensor. |
| eigen_assert(internal::array_prod(m_impl.dimensions()) == internal::array_prod(op.dimensions())); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } |
| |
| #ifdef EIGEN_USE_THREADS |
| template <typename EvalSubExprsCallback> |
| EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType data, EvalSubExprsCallback done) { |
| m_impl.evalSubExprsIfNeededAsync(data, std::move(done)); |
| } |
| #endif |
| |
| EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { return m_impl.evalSubExprsIfNeeded(data); } |
| EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(index); } |
| |
| template <int LoadMode> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { |
| return m_impl.template packet<LoadMode>(index); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { |
| return m_impl.costPerCoeff(vectorized); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const { |
| return internal::TensorBlockResourceRequirements::any(); |
| } |
| |
| // required in block(OutputTensorBlock* output_block) const |
| // For C++03 compatibility this must be defined outside the method |
| struct BlockIteratorState { |
| Index stride; |
| Index span; |
| Index size; |
| Index count; |
| }; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch, |
| bool /*root_of_expr_ast*/ = false) const { |
| eigen_assert(m_impl.data() != NULL); |
| eigen_assert((kind == Runtime) || (kind == OneByN && desc.dimensions()[0] == 1) || |
| (kind == NByOne && desc.dimensions()[1] == 1)); |
| |
| if (kind == OneByN || kind == NByOne) { |
| // We can guarantee at compile time that block is just a contiguous slice |
| // of the underlying expression memory buffer. |
| return TensorBlock(internal::TensorBlockKind::kView, m_impl.data() + desc.offset(), desc.dimensions()); |
| } else { |
| // This will do additional runtime checks, and in the end it might be also |
| // a view, or it might be a block materialized in the temporary buffer. |
| return TensorBlock::materialize(m_impl.data(), m_dimensions, desc, scratch); |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC typename Storage::Type data() const { return constCast(m_impl.data()); } |
| |
| EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } |
| |
| protected: |
| TensorEvaluator<ArgType, Device> m_impl; |
| NewDimensions m_dimensions; |
| }; |
| |
| // Eval as lvalue |
| template <typename NewDimensions, typename ArgType, typename Device> |
| struct TensorEvaluator<TensorReshapingOp<NewDimensions, ArgType>, Device> |
| : public TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> |
| |
| { |
| typedef TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> Base; |
| typedef TensorReshapingOp<NewDimensions, ArgType> XprType; |
| typedef NewDimensions Dimensions; |
| |
| static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout; |
| enum { |
| IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, |
| PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, |
| BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess, |
| PreferBlockAccess = false, |
| CoordAccess = false, // to be implemented |
| RawAccess = TensorEvaluator<ArgType, Device>::RawAccess |
| }; |
| |
| EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {} |
| |
| typedef typename XprType::Index Index; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockDescriptor<TensorEvaluator::NumOutputDims, Index> TensorBlockDesc; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) const { |
| return this->m_impl.coeffRef(index); |
| } |
| |
| template <int StoreMode> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) const { |
| this->m_impl.template writePacket<StoreMode>(index, x); |
| } |
| |
| template <typename TensorBlock> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(const TensorBlockDesc& desc, const TensorBlock& block) { |
| eigen_assert(this->m_impl.data() != NULL); |
| |
| typedef typename TensorBlock::XprType TensorBlockExpr; |
| typedef internal::TensorBlockAssignment<Scalar, TensorEvaluator::NumOutputDims, TensorBlockExpr, Index> |
| TensorBlockAssign; |
| |
| TensorBlockAssign::Run(TensorBlockAssign::target(desc.dimensions(), internal::strides<Layout>(this->dimensions()), |
| this->m_impl.data(), desc.offset()), |
| block.expr()); |
| } |
| }; |
| |
| /** \class TensorSlicing |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief Tensor slicing class. |
| * |
| * |
| */ |
| namespace internal { |
| template <typename StartIndices, typename Sizes, typename XprType> |
| struct traits<TensorSlicingOp<StartIndices, Sizes, XprType>> : public traits<XprType> { |
| typedef typename XprType::Scalar Scalar; |
| typedef traits<XprType> XprTraits; |
| typedef typename XprTraits::StorageKind StorageKind; |
| typedef typename XprTraits::Index Index; |
| typedef typename XprType::Nested Nested; |
| typedef std::remove_reference_t<Nested> Nested_; |
| static constexpr int NumDimensions = array_size<StartIndices>::value; |
| static constexpr int Layout = XprTraits::Layout; |
| typedef typename XprTraits::PointerType PointerType; |
| }; |
| |
| template <typename StartIndices, typename Sizes, typename XprType> |
| struct eval<TensorSlicingOp<StartIndices, Sizes, XprType>, Eigen::Dense> { |
| typedef const TensorSlicingOp<StartIndices, Sizes, XprType> EIGEN_DEVICE_REF type; |
| }; |
| |
| template <typename StartIndices, typename Sizes, typename XprType> |
| struct nested<TensorSlicingOp<StartIndices, Sizes, XprType>, 1, |
| typename eval<TensorSlicingOp<StartIndices, Sizes, XprType>>::type> { |
| typedef TensorSlicingOp<StartIndices, Sizes, XprType> type; |
| }; |
| |
| } // end namespace internal |
| |
| template <typename StartIndices, typename Sizes, typename XprType> |
| class TensorSlicingOp : public TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType>> { |
| public: |
| typedef TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType>> Base; |
| typedef typename Eigen::internal::traits<TensorSlicingOp>::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename Eigen::internal::nested<TensorSlicingOp>::type Nested; |
| typedef typename Eigen::internal::traits<TensorSlicingOp>::StorageKind StorageKind; |
| typedef typename Eigen::internal::traits<TensorSlicingOp>::Index Index; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp(const XprType& expr, const StartIndices& indices, |
| const Sizes& sizes) |
| : m_xpr(expr), m_indices(indices), m_sizes(sizes) {} |
| |
| EIGEN_DEVICE_FUNC const StartIndices& startIndices() const { return m_indices; } |
| EIGEN_DEVICE_FUNC const Sizes& sizes() const { return m_sizes; } |
| |
| EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; } |
| |
| EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorSlicingOp) |
| |
| protected: |
| typename XprType::Nested m_xpr; |
| const StartIndices m_indices; |
| const Sizes m_sizes; |
| }; |
| |
| namespace internal { |
| |
| // Fixme: figure out the exact threshold |
| template <typename Index, typename Device, bool BlockAccess> |
| struct MemcpyTriggerForSlicing { |
| EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const Device& device) : threshold_(2 * device.numThreads()) {} |
| EIGEN_DEVICE_FUNC bool operator()(Index total, Index contiguous) const { |
| const bool prefer_block_evaluation = BlockAccess && total > 32 * 1024; |
| return !prefer_block_evaluation && contiguous > threshold_; |
| } |
| |
| private: |
| Index threshold_; |
| }; |
| |
| // It is very expensive to start the memcpy kernel on GPU: we therefore only |
| // use it for large copies. |
| #ifdef EIGEN_USE_GPU |
| template <typename Index, bool BlockAccess> |
| struct MemcpyTriggerForSlicing<Index, GpuDevice, BlockAccess> { |
| EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const GpuDevice&) {} |
| EIGEN_DEVICE_FUNC bool operator()(Index, Index contiguous) const { return contiguous > 4 * 1024 * 1024; } |
| }; |
| #endif |
| |
| // It is very expensive to start the memcpy kernel on GPU: we therefore only |
| // use it for large copies. |
| #ifdef EIGEN_USE_SYCL |
| template <typename Index, bool BlockAccess> |
| struct MemcpyTriggerForSlicing<Index, Eigen::SyclDevice, BlockAccess> { |
| EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const SyclDevice&) {} |
| EIGEN_DEVICE_FUNC bool operator()(Index, Index contiguous) const { return contiguous > 4 * 1024 * 1024; } |
| }; |
| #endif |
| |
| } // namespace internal |
| |
| // Eval as rvalue |
| template <typename StartIndices, typename Sizes, typename ArgType, typename Device> |
| struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> { |
| typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType; |
| static constexpr int NumDims = internal::array_size<Sizes>::value; |
| |
| typedef typename XprType::Index Index; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| typedef Sizes Dimensions; |
| typedef StorageMemory<CoeffReturnType, Device> Storage; |
| typedef StorageMemory<std::remove_const_t<CoeffReturnType>, Device> ConstCastStorage; |
| typedef typename Storage::Type EvaluatorPointerType; |
| |
| static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout; |
| enum { |
| // Alignment can't be guaranteed at compile time since it depends on the |
| // slice offsets and sizes. |
| IsAligned = false, |
| PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, |
| BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess && |
| // FIXME: Temporary workaround for bug in slicing of bool tensors. |
| !internal::is_same<std::remove_const_t<Scalar>, bool>::value, |
| PreferBlockAccess = true, |
| CoordAccess = false, |
| RawAccess = false |
| }; |
| |
| typedef std::remove_const_t<Scalar> ScalarNoConst; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; |
| typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; |
| |
| // Tensor slicing does not change the block type. |
| typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock TensorBlock; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) |
| : m_impl(op.expression(), device), m_device(device), m_dimensions(op.sizes()), m_offsets(op.startIndices()) { |
| m_is_identity = true; |
| for (int i = 0; i < internal::array_size<Dimensions>::value; ++i) { |
| eigen_assert(m_impl.dimensions()[i] >= op.sizes()[i] + op.startIndices()[i]); |
| if (m_impl.dimensions()[i] != op.sizes()[i] || op.startIndices()[i] != 0) { |
| m_is_identity = false; |
| } |
| } |
| |
| // No strides for scalars. |
| if (NumDims == 0) return; |
| |
| const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); |
| const Sizes& output_dims = op.sizes(); |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| m_inputStrides[0] = 1; |
| for (int i = 1; i < NumDims; ++i) { |
| m_inputStrides[i] = m_inputStrides[i - 1] * input_dims[i - 1]; |
| } |
| |
| // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed. |
| m_outputStrides[0] = 1; |
| for (int i = 1; i < NumDims; ++i) { |
| m_outputStrides[i] = m_outputStrides[i - 1] * output_dims[i - 1]; |
| m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : 1); |
| } |
| } else { |
| m_inputStrides[NumDims - 1] = 1; |
| for (int i = NumDims - 2; i >= 0; --i) { |
| m_inputStrides[i] = m_inputStrides[i + 1] * input_dims[i + 1]; |
| } |
| |
| // Don't initialize m_fastOutputStrides[NumDims-1] since it won't ever be accessed. |
| m_outputStrides[NumDims - 1] = 1; |
| for (int i = NumDims - 2; i >= 0; --i) { |
| m_outputStrides[i] = m_outputStrides[i + 1] * output_dims[i + 1]; |
| m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : 1); |
| } |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } |
| |
| EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { |
| m_impl.evalSubExprsIfNeeded(NULL); |
| if (!NumTraits<std::remove_const_t<Scalar>>::RequireInitialization && data && m_impl.data()) { |
| Index contiguous_values = 1; |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| for (int i = 0; i < NumDims; ++i) { |
| contiguous_values *= dimensions()[i]; |
| if (dimensions()[i] != m_impl.dimensions()[i]) { |
| break; |
| } |
| } |
| } else { |
| for (int i = NumDims - 1; i >= 0; --i) { |
| contiguous_values *= dimensions()[i]; |
| if (dimensions()[i] != m_impl.dimensions()[i]) { |
| break; |
| } |
| } |
| } |
| // Use memcpy if it's going to be faster than using the regular evaluation. |
| const internal::MemcpyTriggerForSlicing<Index, Device, BlockAccess> trigger(m_device); |
| if (trigger(internal::array_prod(dimensions()), contiguous_values)) { |
| EvaluatorPointerType src = (EvaluatorPointerType)m_impl.data(); |
| for (Index i = 0; i < internal::array_prod(dimensions()); i += contiguous_values) { |
| Index offset = srcCoeff(i); |
| m_device.memcpy((void*)(m_device.get(data + i)), m_device.get(src + offset), |
| contiguous_values * sizeof(Scalar)); |
| } |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| #ifdef EIGEN_USE_THREADS |
| template <typename EvalSubExprsCallback> |
| EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType /*data*/, EvalSubExprsCallback done) { |
| m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); }); |
| } |
| #endif // EIGEN_USE_THREADS |
| |
| EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { |
| if (m_is_identity) { |
| return m_impl.coeff(index); |
| } else { |
| return m_impl.coeff(srcCoeff(index)); |
| } |
| } |
| |
| template <int LoadMode> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { |
| const int packetSize = PacketType<CoeffReturnType, Device>::size; |
| EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) |
| eigen_assert(index + packetSize - 1 < internal::array_prod(dimensions())); |
| |
| if (m_is_identity) { |
| return m_impl.template packet<LoadMode>(index); |
| } |
| |
| Index inputIndices[] = {0, 0}; |
| Index indices[] = {index, index + packetSize - 1}; |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| EIGEN_UNROLL_LOOP |
| for (int i = NumDims - 1; i > 0; --i) { |
| const Index idx0 = indices[0] / m_fastOutputStrides[i]; |
| const Index idx1 = indices[1] / m_fastOutputStrides[i]; |
| inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i]; |
| inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i]; |
| indices[0] -= idx0 * m_outputStrides[i]; |
| indices[1] -= idx1 * m_outputStrides[i]; |
| } |
| inputIndices[0] += (indices[0] + m_offsets[0]); |
| inputIndices[1] += (indices[1] + m_offsets[0]); |
| } else { |
| EIGEN_UNROLL_LOOP |
| for (int i = 0; i < NumDims - 1; ++i) { |
| const Index idx0 = indices[0] / m_fastOutputStrides[i]; |
| const Index idx1 = indices[1] / m_fastOutputStrides[i]; |
| inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i]; |
| inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i]; |
| indices[0] -= idx0 * m_outputStrides[i]; |
| indices[1] -= idx1 * m_outputStrides[i]; |
| } |
| inputIndices[0] += (indices[0] + m_offsets[NumDims - 1]); |
| inputIndices[1] += (indices[1] + m_offsets[NumDims - 1]); |
| } |
| if (inputIndices[1] - inputIndices[0] == packetSize - 1) { |
| PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]); |
| return rslt; |
| } else { |
| EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[packetSize]; |
| values[0] = m_impl.coeff(inputIndices[0]); |
| values[packetSize - 1] = m_impl.coeff(inputIndices[1]); |
| EIGEN_UNROLL_LOOP |
| for (int i = 1; i < packetSize - 1; ++i) { |
| values[i] = coeff(index + i); |
| } |
| PacketReturnType rslt = internal::pload<PacketReturnType>(values); |
| return rslt; |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { |
| return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, m_is_identity ? 1 : NumDims); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const { |
| const size_t target_size = m_device.lastLevelCacheSize(); |
| return internal::TensorBlockResourceRequirements::merge( |
| internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size), m_impl.getResourceRequirements()); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch, |
| bool /*root_of_expr_ast*/ = false) const { |
| TensorBlockDesc arg_desc = desc.WithOffset(srcCoeff(desc.offset())); |
| TensorBlock block = m_impl.block(arg_desc, scratch); |
| if (!arg_desc.HasDestinationBuffer()) desc.DropDestinationBuffer(); |
| return block; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Storage::Type data() const { |
| typename Storage::Type result = constCast(m_impl.data()); |
| if (result) { |
| Index offset = 0; |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| for (int i = 0; i < NumDims; ++i) { |
| if (m_dimensions[i] != m_impl.dimensions()[i]) { |
| offset += m_offsets[i] * m_inputStrides[i]; |
| for (int j = i + 1; j < NumDims; ++j) { |
| if (m_dimensions[j] > 1) { |
| return NULL; |
| } |
| offset += m_offsets[j] * m_inputStrides[j]; |
| } |
| break; |
| } |
| } |
| } else { |
| for (int i = NumDims - 1; i >= 0; --i) { |
| if (m_dimensions[i] != m_impl.dimensions()[i]) { |
| offset += m_offsets[i] * m_inputStrides[i]; |
| for (int j = i - 1; j >= 0; --j) { |
| if (m_dimensions[j] > 1) { |
| return NULL; |
| } |
| offset += m_offsets[j] * m_inputStrides[j]; |
| } |
| break; |
| } |
| } |
| } |
| return result + offset; |
| } |
| return NULL; |
| } |
| |
| protected: |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { |
| Index inputIndex = 0; |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| EIGEN_UNROLL_LOOP |
| for (int i = NumDims - 1; i > 0; --i) { |
| const Index idx = index / m_fastOutputStrides[i]; |
| inputIndex += (idx + m_offsets[i]) * m_inputStrides[i]; |
| index -= idx * m_outputStrides[i]; |
| } |
| inputIndex += (index + m_offsets[0]); |
| } else { |
| EIGEN_UNROLL_LOOP |
| for (int i = 0; i < NumDims - 1; ++i) { |
| const Index idx = index / m_fastOutputStrides[i]; |
| inputIndex += (idx + m_offsets[i]) * m_inputStrides[i]; |
| index -= idx * m_outputStrides[i]; |
| } |
| inputIndex += (index + m_offsets[NumDims - 1]); |
| } |
| return inputIndex; |
| } |
| |
| array<Index, NumDims> m_outputStrides; |
| array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides; |
| array<Index, NumDims> m_inputStrides; |
| TensorEvaluator<ArgType, Device> m_impl; |
| const Device EIGEN_DEVICE_REF m_device; |
| Dimensions m_dimensions; |
| bool m_is_identity; |
| const StartIndices m_offsets; |
| }; |
| |
| // Eval as lvalue |
| template <typename StartIndices, typename Sizes, typename ArgType, typename Device> |
| struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> |
| : public TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> { |
| typedef TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> Base; |
| typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType; |
| static constexpr int NumDims = internal::array_size<Sizes>::value; |
| |
| typedef typename XprType::Index Index; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| typedef Sizes Dimensions; |
| |
| static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout; |
| enum { |
| IsAligned = false, |
| PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, |
| BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess, |
| PreferBlockAccess = true, |
| CoordAccess = false, |
| RawAccess = (NumDims == 1) & TensorEvaluator<ArgType, Device>::RawAccess |
| }; |
| |
| typedef std::remove_const_t<Scalar> ScalarNoConst; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; |
| typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) const { |
| if (this->m_is_identity) { |
| return this->m_impl.coeffRef(index); |
| } else { |
| return this->m_impl.coeffRef(this->srcCoeff(index)); |
| } |
| } |
| |
| template <int StoreMode> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) const { |
| if (this->m_is_identity) { |
| this->m_impl.template writePacket<StoreMode>(index, x); |
| return; |
| } |
| |
| const int packetSize = PacketType<CoeffReturnType, Device>::size; |
| Index inputIndices[] = {0, 0}; |
| Index indices[] = {index, index + packetSize - 1}; |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| EIGEN_UNROLL_LOOP |
| for (int i = NumDims - 1; i > 0; --i) { |
| const Index idx0 = indices[0] / this->m_fastOutputStrides[i]; |
| const Index idx1 = indices[1] / this->m_fastOutputStrides[i]; |
| inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i]; |
| inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i]; |
| indices[0] -= idx0 * this->m_outputStrides[i]; |
| indices[1] -= idx1 * this->m_outputStrides[i]; |
| } |
| inputIndices[0] += (indices[0] + this->m_offsets[0]); |
| inputIndices[1] += (indices[1] + this->m_offsets[0]); |
| } else { |
| EIGEN_UNROLL_LOOP |
| for (int i = 0; i < NumDims - 1; ++i) { |
| const Index idx0 = indices[0] / this->m_fastOutputStrides[i]; |
| const Index idx1 = indices[1] / this->m_fastOutputStrides[i]; |
| inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i]; |
| inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i]; |
| indices[0] -= idx0 * this->m_outputStrides[i]; |
| indices[1] -= idx1 * this->m_outputStrides[i]; |
| } |
| inputIndices[0] += (indices[0] + this->m_offsets[NumDims - 1]); |
| inputIndices[1] += (indices[1] + this->m_offsets[NumDims - 1]); |
| } |
| if (inputIndices[1] - inputIndices[0] == packetSize - 1) { |
| this->m_impl.template writePacket<StoreMode>(inputIndices[0], x); |
| } else { |
| EIGEN_ALIGN_MAX CoeffReturnType values[packetSize]; |
| internal::pstore<CoeffReturnType, PacketReturnType>(values, x); |
| this->m_impl.coeffRef(inputIndices[0]) = values[0]; |
| this->m_impl.coeffRef(inputIndices[1]) = values[packetSize - 1]; |
| EIGEN_UNROLL_LOOP |
| for (int i = 1; i < packetSize - 1; ++i) { |
| this->coeffRef(index + i) = values[i]; |
| } |
| } |
| } |
| |
| template <typename TensorBlock> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(const TensorBlockDesc& desc, const TensorBlock& block) { |
| TensorBlockDesc arg_desc = desc.WithOffset(this->srcCoeff(desc.offset())); |
| this->m_impl.writeBlock(arg_desc, block); |
| } |
| }; |
| |
| namespace internal { |
| template <typename StartIndices, typename StopIndices, typename Strides, typename XprType> |
| struct traits<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>> : public traits<XprType> { |
| typedef typename XprType::Scalar Scalar; |
| typedef traits<XprType> XprTraits; |
| typedef typename XprTraits::StorageKind StorageKind; |
| typedef typename XprTraits::Index Index; |
| typedef typename XprType::Nested Nested; |
| typedef std::remove_reference_t<Nested> Nested_; |
| static constexpr int NumDimensions = array_size<StartIndices>::value; |
| static constexpr int Layout = XprTraits::Layout; |
| typedef typename XprTraits::PointerType PointerType; |
| }; |
| |
| template <typename StartIndices, typename StopIndices, typename Strides, typename XprType> |
| struct eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Eigen::Dense> { |
| typedef const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> EIGEN_DEVICE_REF type; |
| }; |
| |
| template <typename StartIndices, typename StopIndices, typename Strides, typename XprType> |
| struct nested<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, 1, |
| typename eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>>::type> { |
| typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> type; |
| }; |
| |
| } // end namespace internal |
| |
| template <typename StartIndices, typename StopIndices, typename Strides, typename XprType> |
| class TensorStridingSlicingOp |
| : public TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>> { |
| public: |
| typedef TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>> Base; |
| typedef typename internal::traits<TensorStridingSlicingOp>::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename internal::nested<TensorStridingSlicingOp>::type Nested; |
| typedef typename internal::traits<TensorStridingSlicingOp>::StorageKind StorageKind; |
| typedef typename internal::traits<TensorStridingSlicingOp>::Index Index; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp(const XprType& expr, const StartIndices& startIndices, |
| const StopIndices& stopIndices, const Strides& strides) |
| : m_xpr(expr), m_startIndices(startIndices), m_stopIndices(stopIndices), m_strides(strides) {} |
| |
| EIGEN_DEVICE_FUNC const StartIndices& startIndices() const { return m_startIndices; } |
| EIGEN_DEVICE_FUNC const StartIndices& stopIndices() const { return m_stopIndices; } |
| EIGEN_DEVICE_FUNC const StartIndices& strides() const { return m_strides; } |
| |
| EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; } |
| |
| EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorStridingSlicingOp) |
| |
| protected: |
| typename XprType::Nested m_xpr; |
| const StartIndices m_startIndices; |
| const StopIndices m_stopIndices; |
| const Strides m_strides; |
| }; |
| |
| // Eval as rvalue |
| template <typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device> |
| struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> { |
| typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType; |
| static constexpr int NumDims = internal::array_size<Strides>::value; |
| typedef typename XprType::Index Index; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| typedef StorageMemory<CoeffReturnType, Device> Storage; |
| typedef typename Storage::Type EvaluatorPointerType; |
| typedef Strides Dimensions; |
| |
| static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout; |
| enum { |
| // Alignment can't be guaranteed at compile time since it depends on the |
| // slice offsets and sizes. |
| IsAligned = false, |
| PacketAccess = false, |
| BlockAccess = false, |
| PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, |
| RawAccess = false |
| }; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockNotImplemented TensorBlock; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) |
| : m_impl(op.expression(), device), m_device(device), m_strides(op.strides()) { |
| // Handle degenerate intervals by gracefully clamping and allowing m_dimensions to be zero |
| DSizes<Index, NumDims> startIndicesClamped, stopIndicesClamped; |
| for (ptrdiff_t i = 0; i < internal::array_size<Dimensions>::value; ++i) { |
| eigen_assert(m_strides[i] != 0 && "0 stride is invalid"); |
| if (m_strides[i] > 0) { |
| startIndicesClamped[i] = clamp(op.startIndices()[i], 0, m_impl.dimensions()[i]); |
| stopIndicesClamped[i] = clamp(op.stopIndices()[i], 0, m_impl.dimensions()[i]); |
| } else { |
| /* implies m_strides[i] < 0 by assert */ |
| startIndicesClamped[i] = clamp(op.startIndices()[i], -1, m_impl.dimensions()[i] - 1); |
| stopIndicesClamped[i] = clamp(op.stopIndices()[i], -1, m_impl.dimensions()[i] - 1); |
| } |
| m_startIndices[i] = startIndicesClamped[i]; |
| } |
| |
| typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions; |
| const InputDimensions& input_dims = m_impl.dimensions(); |
| |
| // compute output tensor shape |
| m_is_identity = true; |
| for (int i = 0; i < NumDims; i++) { |
| Index interval = stopIndicesClamped[i] - startIndicesClamped[i]; |
| if (interval == 0 || ((interval < 0) != (m_strides[i] < 0))) { |
| m_dimensions[i] = 0; |
| } else { |
| m_dimensions[i] = (interval / m_strides[i]) + (interval % m_strides[i] != 0 ? 1 : 0); |
| eigen_assert(m_dimensions[i] >= 0); |
| } |
| if (m_strides[i] != 1 || interval != m_impl.dimensions()[i]) { |
| m_is_identity = false; |
| } |
| } |
| |
| Strides output_dims = m_dimensions; |
| |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| m_inputStrides[0] = m_strides[0]; |
| m_offsets[0] = startIndicesClamped[0]; |
| Index previousDimProduct = 1; |
| for (int i = 1; i < NumDims; ++i) { |
| previousDimProduct *= input_dims[i - 1]; |
| m_inputStrides[i] = previousDimProduct * m_strides[i]; |
| m_offsets[i] = startIndicesClamped[i] * previousDimProduct; |
| } |
| |
| // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed. |
| m_outputStrides[0] = 1; |
| for (int i = 1; i < NumDims; ++i) { |
| m_outputStrides[i] = m_outputStrides[i - 1] * output_dims[i - 1]; |
| m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : 1); |
| } |
| } else { |
| m_inputStrides[NumDims - 1] = m_strides[NumDims - 1]; |
| m_offsets[NumDims - 1] = startIndicesClamped[NumDims - 1]; |
| Index previousDimProduct = 1; |
| for (int i = NumDims - 2; i >= 0; --i) { |
| previousDimProduct *= input_dims[i + 1]; |
| m_inputStrides[i] = previousDimProduct * m_strides[i]; |
| m_offsets[i] = startIndicesClamped[i] * previousDimProduct; |
| } |
| |
| m_outputStrides[NumDims - 1] = 1; |
| for (int i = NumDims - 2; i >= 0; --i) { |
| m_outputStrides[i] = m_outputStrides[i + 1] * output_dims[i + 1]; |
| m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : 1); |
| } |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } |
| |
| EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { |
| m_impl.evalSubExprsIfNeeded(NULL); |
| return true; |
| } |
| |
| EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { |
| if (m_is_identity) { |
| return m_impl.coeff(index); |
| } else { |
| return m_impl.coeff(srcCoeff(index)); |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { |
| return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, m_is_identity ? 1 : NumDims); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Storage::Type data() const { return NULL; } |
| |
| protected: |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { |
| Index inputIndex = 0; |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| EIGEN_UNROLL_LOOP |
| for (int i = NumDims - 1; i >= 0; --i) { |
| const Index idx = index / m_fastOutputStrides[i]; |
| inputIndex += idx * m_inputStrides[i] + m_offsets[i]; |
| index -= idx * m_outputStrides[i]; |
| } |
| } else { |
| EIGEN_UNROLL_LOOP |
| for (int i = 0; i < NumDims; ++i) { |
| const Index idx = index / m_fastOutputStrides[i]; |
| inputIndex += idx * m_inputStrides[i] + m_offsets[i]; |
| index -= idx * m_outputStrides[i]; |
| } |
| } |
| return inputIndex; |
| } |
| |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index clamp(Index value, Index min, Index max) { |
| #ifndef SYCL_DEVICE_ONLY |
| return numext::maxi(min, numext::mini(max, value)); |
| #else |
| return cl::sycl::clamp(value, min, max); |
| #endif |
| } |
| |
| array<Index, NumDims> m_outputStrides; |
| array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides; |
| array<Index, NumDims> m_inputStrides; |
| bool m_is_identity; |
| TensorEvaluator<ArgType, Device> m_impl; |
| const Device EIGEN_DEVICE_REF m_device; |
| DSizes<Index, NumDims> m_startIndices; // clamped startIndices |
| DSizes<Index, NumDims> m_dimensions; |
| DSizes<Index, NumDims> m_offsets; // offset in a flattened shape |
| const Strides m_strides; |
| }; |
| |
| // Eval as lvalue |
| template <typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device> |
| struct TensorEvaluator<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> |
| : public TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> { |
| typedef TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> Base; |
| typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType; |
| static constexpr int NumDims = internal::array_size<Strides>::value; |
| static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout; |
| |
| enum { |
| IsAligned = false, |
| PacketAccess = false, |
| BlockAccess = false, |
| PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, |
| CoordAccess = TensorEvaluator<ArgType, Device>::CoordAccess, |
| RawAccess = false |
| }; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockNotImplemented TensorBlock; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {} |
| |
| typedef typename XprType::Index Index; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| typedef Strides Dimensions; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) const { |
| if (this->m_is_identity) { |
| return this->m_impl.coeffRef(index); |
| } else { |
| return this->m_impl.coeffRef(this->srcCoeff(index)); |
| } |
| } |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H |