blob: d790f35bb9c169e3d904f3d4cf5dc3cd0af1a184 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
#define EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \class TensorReshaping
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor reshaping class.
*
*
*/
namespace internal {
template <typename NewDimensions, typename XprType>
struct traits<TensorReshapingOp<NewDimensions, XprType>> : public traits<XprType> {
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef std::remove_reference_t<Nested> Nested_;
static constexpr int NumDimensions = array_size<NewDimensions>::value;
static constexpr int Layout = XprTraits::Layout;
typedef typename XprTraits::PointerType PointerType;
};
template <typename NewDimensions, typename XprType>
struct eval<TensorReshapingOp<NewDimensions, XprType>, Eigen::Dense> {
typedef const TensorReshapingOp<NewDimensions, XprType> EIGEN_DEVICE_REF type;
};
template <typename NewDimensions, typename XprType>
struct nested<TensorReshapingOp<NewDimensions, XprType>, 1,
typename eval<TensorReshapingOp<NewDimensions, XprType>>::type> {
typedef TensorReshapingOp<NewDimensions, XprType> type;
};
} // end namespace internal
template <typename NewDimensions, typename XprType>
class TensorReshapingOp : public TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors> {
public:
typedef TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors> Base;
typedef typename Eigen::internal::traits<TensorReshapingOp>::Scalar Scalar;
typedef std::remove_const_t<typename XprType::CoeffReturnType> CoeffReturnType;
typedef typename Eigen::internal::nested<TensorReshapingOp>::type Nested;
typedef typename Eigen::internal::traits<TensorReshapingOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorReshapingOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp(const XprType& expr, const NewDimensions& dims)
: m_xpr(expr), m_dims(dims) {}
EIGEN_DEVICE_FUNC const NewDimensions& dimensions() const { return m_dims; }
EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; }
EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorReshapingOp)
protected:
typename XprType::Nested m_xpr;
const NewDimensions m_dims;
};
// Eval as rvalue
template <typename NewDimensions, typename ArgType, typename Device>
struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> {
typedef TensorReshapingOp<NewDimensions, ArgType> XprType;
typedef NewDimensions Dimensions;
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
typedef StorageMemory<std::remove_const_t<CoeffReturnType>, Device> ConstCastStorage;
static constexpr int NumOutputDims = internal::array_size<Dimensions>::value;
static constexpr int NumInputDims =
internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
enum ReshapingKind {
// We do not use layout information to determine reshaping kind.
// Depending on the layout `N` can be inner or outer dimension.
OneByN = 0, // expr.reshape(1, N)
NByOne = 1, // expr.reshape(N, 1)
Runtime = 2 // Reshape dimensions are dynamic (specified at runtime).
};
// clang-format off
static const ReshapingKind kind =
(NumOutputDims == 2 && internal::index_statically_eq<NewDimensions>(/*index=*/0, /*value=*/1)) ? OneByN
: (NumOutputDims == 2 && internal::index_statically_eq<NewDimensions>(/*index=*/1, /*value=*/1)) ? NByOne
: Runtime;
// clang-format on
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
enum {
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
// For trivial reshapes with raw access to underlying data we will provide
// zero overhead block access.
// TODO(ezhulenev): Consider adding block access without raw access?
BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess && NumInputDims > 0 && NumOutputDims > 0,
PreferBlockAccess = false,
CoordAccess = false, // to be implemented
RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
};
typedef std::remove_const_t<Scalar> ScalarNoConst;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumOutputDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumOutputDims, Layout, Index> TensorBlock;
//===--------------------------------------------------------------------===//
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_dimensions(op.dimensions()) {
// The total size of the reshaped tensor must be equal to the total size
// of the input tensor.
eigen_assert(internal::array_prod(m_impl.dimensions()) == internal::array_prod(op.dimensions()));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
#ifdef EIGEN_USE_THREADS
template <typename EvalSubExprsCallback>
EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType data, EvalSubExprsCallback done) {
m_impl.evalSubExprsIfNeededAsync(data, std::move(done));
}
#endif
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { return m_impl.evalSubExprsIfNeeded(data); }
EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(index); }
template <int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
return m_impl.template packet<LoadMode>(index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
return m_impl.costPerCoeff(vectorized);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const {
return internal::TensorBlockResourceRequirements::any();
}
// required in block(OutputTensorBlock* output_block) const
// For C++03 compatibility this must be defined outside the method
struct BlockIteratorState {
Index stride;
Index span;
Index size;
Index count;
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
bool /*root_of_expr_ast*/ = false) const {
eigen_assert(m_impl.data() != NULL);
eigen_assert((kind == Runtime) || (kind == OneByN && desc.dimensions()[0] == 1) ||
(kind == NByOne && desc.dimensions()[1] == 1));
if (kind == OneByN || kind == NByOne) {
// We can guarantee at compile time that block is just a contiguous slice
// of the underlying expression memory buffer.
return TensorBlock(internal::TensorBlockKind::kView, m_impl.data() + desc.offset(), desc.dimensions());
} else {
// This will do additional runtime checks, and in the end it might be also
// a view, or it might be a block materialized in the temporary buffer.
return TensorBlock::materialize(m_impl.data(), m_dimensions, desc, scratch);
}
}
EIGEN_DEVICE_FUNC typename Storage::Type data() const { return constCast(m_impl.data()); }
EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
protected:
TensorEvaluator<ArgType, Device> m_impl;
NewDimensions m_dimensions;
};
// Eval as lvalue
template <typename NewDimensions, typename ArgType, typename Device>
struct TensorEvaluator<TensorReshapingOp<NewDimensions, ArgType>, Device>
: public TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
{
typedef TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> Base;
typedef TensorReshapingOp<NewDimensions, ArgType> XprType;
typedef NewDimensions Dimensions;
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
enum {
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess,
PreferBlockAccess = false,
CoordAccess = false, // to be implemented
RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
};
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {}
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<TensorEvaluator::NumOutputDims, Index> TensorBlockDesc;
//===--------------------------------------------------------------------===//
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) const {
return this->m_impl.coeffRef(index);
}
template <int StoreMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) const {
this->m_impl.template writePacket<StoreMode>(index, x);
}
template <typename TensorBlock>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(const TensorBlockDesc& desc, const TensorBlock& block) {
eigen_assert(this->m_impl.data() != NULL);
typedef typename TensorBlock::XprType TensorBlockExpr;
typedef internal::TensorBlockAssignment<Scalar, TensorEvaluator::NumOutputDims, TensorBlockExpr, Index>
TensorBlockAssign;
TensorBlockAssign::Run(TensorBlockAssign::target(desc.dimensions(), internal::strides<Layout>(this->dimensions()),
this->m_impl.data(), desc.offset()),
block.expr());
}
};
/** \class TensorSlicing
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor slicing class.
*
*
*/
namespace internal {
template <typename StartIndices, typename Sizes, typename XprType>
struct traits<TensorSlicingOp<StartIndices, Sizes, XprType>> : public traits<XprType> {
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef std::remove_reference_t<Nested> Nested_;
static constexpr int NumDimensions = array_size<StartIndices>::value;
static constexpr int Layout = XprTraits::Layout;
typedef typename XprTraits::PointerType PointerType;
};
template <typename StartIndices, typename Sizes, typename XprType>
struct eval<TensorSlicingOp<StartIndices, Sizes, XprType>, Eigen::Dense> {
typedef const TensorSlicingOp<StartIndices, Sizes, XprType> EIGEN_DEVICE_REF type;
};
template <typename StartIndices, typename Sizes, typename XprType>
struct nested<TensorSlicingOp<StartIndices, Sizes, XprType>, 1,
typename eval<TensorSlicingOp<StartIndices, Sizes, XprType>>::type> {
typedef TensorSlicingOp<StartIndices, Sizes, XprType> type;
};
} // end namespace internal
template <typename StartIndices, typename Sizes, typename XprType>
class TensorSlicingOp : public TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType>> {
public:
typedef TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType>> Base;
typedef typename Eigen::internal::traits<TensorSlicingOp>::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename Eigen::internal::nested<TensorSlicingOp>::type Nested;
typedef typename Eigen::internal::traits<TensorSlicingOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorSlicingOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp(const XprType& expr, const StartIndices& indices,
const Sizes& sizes)
: m_xpr(expr), m_indices(indices), m_sizes(sizes) {}
EIGEN_DEVICE_FUNC const StartIndices& startIndices() const { return m_indices; }
EIGEN_DEVICE_FUNC const Sizes& sizes() const { return m_sizes; }
EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; }
EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorSlicingOp)
protected:
typename XprType::Nested m_xpr;
const StartIndices m_indices;
const Sizes m_sizes;
};
namespace internal {
// Fixme: figure out the exact threshold
template <typename Index, typename Device, bool BlockAccess>
struct MemcpyTriggerForSlicing {
EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const Device& device) : threshold_(2 * device.numThreads()) {}
EIGEN_DEVICE_FUNC bool operator()(Index total, Index contiguous) const {
const bool prefer_block_evaluation = BlockAccess && total > 32 * 1024;
return !prefer_block_evaluation && contiguous > threshold_;
}
private:
Index threshold_;
};
// It is very expensive to start the memcpy kernel on GPU: we therefore only
// use it for large copies.
#ifdef EIGEN_USE_GPU
template <typename Index, bool BlockAccess>
struct MemcpyTriggerForSlicing<Index, GpuDevice, BlockAccess> {
EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const GpuDevice&) {}
EIGEN_DEVICE_FUNC bool operator()(Index, Index contiguous) const { return contiguous > 4 * 1024 * 1024; }
};
#endif
// It is very expensive to start the memcpy kernel on GPU: we therefore only
// use it for large copies.
#ifdef EIGEN_USE_SYCL
template <typename Index, bool BlockAccess>
struct MemcpyTriggerForSlicing<Index, Eigen::SyclDevice, BlockAccess> {
EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const SyclDevice&) {}
EIGEN_DEVICE_FUNC bool operator()(Index, Index contiguous) const { return contiguous > 4 * 1024 * 1024; }
};
#endif
} // namespace internal
// Eval as rvalue
template <typename StartIndices, typename Sizes, typename ArgType, typename Device>
struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> {
typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType;
static constexpr int NumDims = internal::array_size<Sizes>::value;
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
typedef Sizes Dimensions;
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef StorageMemory<std::remove_const_t<CoeffReturnType>, Device> ConstCastStorage;
typedef typename Storage::Type EvaluatorPointerType;
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
enum {
// Alignment can't be guaranteed at compile time since it depends on the
// slice offsets and sizes.
IsAligned = false,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess &&
// FIXME: Temporary workaround for bug in slicing of bool tensors.
!internal::is_same<std::remove_const_t<Scalar>, bool>::value,
PreferBlockAccess = true,
CoordAccess = false,
RawAccess = false
};
typedef std::remove_const_t<Scalar> ScalarNoConst;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
// Tensor slicing does not change the block type.
typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock TensorBlock;
//===--------------------------------------------------------------------===//
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_device(device), m_dimensions(op.sizes()), m_offsets(op.startIndices()) {
m_is_identity = true;
for (int i = 0; i < internal::array_size<Dimensions>::value; ++i) {
eigen_assert(m_impl.dimensions()[i] >= op.sizes()[i] + op.startIndices()[i]);
if (m_impl.dimensions()[i] != op.sizes()[i] || op.startIndices()[i] != 0) {
m_is_identity = false;
}
}
// No strides for scalars.
if (NumDims == 0) return;
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
const Sizes& output_dims = op.sizes();
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_inputStrides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
m_inputStrides[i] = m_inputStrides[i - 1] * input_dims[i - 1];
}
// Don't initialize m_fastOutputStrides[0] since it won't ever be accessed.
m_outputStrides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
m_outputStrides[i] = m_outputStrides[i - 1] * output_dims[i - 1];
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : 1);
}
} else {
m_inputStrides[NumDims - 1] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
m_inputStrides[i] = m_inputStrides[i + 1] * input_dims[i + 1];
}
// Don't initialize m_fastOutputStrides[NumDims-1] since it won't ever be accessed.
m_outputStrides[NumDims - 1] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
m_outputStrides[i] = m_outputStrides[i + 1] * output_dims[i + 1];
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : 1);
}
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
m_impl.evalSubExprsIfNeeded(NULL);
if (!NumTraits<std::remove_const_t<Scalar>>::RequireInitialization && data && m_impl.data()) {
Index contiguous_values = 1;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = 0; i < NumDims; ++i) {
contiguous_values *= dimensions()[i];
if (dimensions()[i] != m_impl.dimensions()[i]) {
break;
}
}
} else {
for (int i = NumDims - 1; i >= 0; --i) {
contiguous_values *= dimensions()[i];
if (dimensions()[i] != m_impl.dimensions()[i]) {
break;
}
}
}
// Use memcpy if it's going to be faster than using the regular evaluation.
const internal::MemcpyTriggerForSlicing<Index, Device, BlockAccess> trigger(m_device);
if (trigger(internal::array_prod(dimensions()), contiguous_values)) {
EvaluatorPointerType src = (EvaluatorPointerType)m_impl.data();
for (Index i = 0; i < internal::array_prod(dimensions()); i += contiguous_values) {
Index offset = srcCoeff(i);
m_device.memcpy((void*)(m_device.get(data + i)), m_device.get(src + offset),
contiguous_values * sizeof(Scalar));
}
return false;
}
}
return true;
}
#ifdef EIGEN_USE_THREADS
template <typename EvalSubExprsCallback>
EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType /*data*/, EvalSubExprsCallback done) {
m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
}
#endif // EIGEN_USE_THREADS
EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
if (m_is_identity) {
return m_impl.coeff(index);
} else {
return m_impl.coeff(srcCoeff(index));
}
}
template <int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
const int packetSize = PacketType<CoeffReturnType, Device>::size;
EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index + packetSize - 1 < internal::array_prod(dimensions()));
if (m_is_identity) {
return m_impl.template packet<LoadMode>(index);
}
Index inputIndices[] = {0, 0};
Index indices[] = {index, index + packetSize - 1};
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
EIGEN_UNROLL_LOOP
for (int i = NumDims - 1; i > 0; --i) {
const Index idx0 = indices[0] / m_fastOutputStrides[i];
const Index idx1 = indices[1] / m_fastOutputStrides[i];
inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
indices[0] -= idx0 * m_outputStrides[i];
indices[1] -= idx1 * m_outputStrides[i];
}
inputIndices[0] += (indices[0] + m_offsets[0]);
inputIndices[1] += (indices[1] + m_offsets[0]);
} else {
EIGEN_UNROLL_LOOP
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx0 = indices[0] / m_fastOutputStrides[i];
const Index idx1 = indices[1] / m_fastOutputStrides[i];
inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
indices[0] -= idx0 * m_outputStrides[i];
indices[1] -= idx1 * m_outputStrides[i];
}
inputIndices[0] += (indices[0] + m_offsets[NumDims - 1]);
inputIndices[1] += (indices[1] + m_offsets[NumDims - 1]);
}
if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
return rslt;
} else {
EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[packetSize];
values[0] = m_impl.coeff(inputIndices[0]);
values[packetSize - 1] = m_impl.coeff(inputIndices[1]);
EIGEN_UNROLL_LOOP
for (int i = 1; i < packetSize - 1; ++i) {
values[i] = coeff(index + i);
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, m_is_identity ? 1 : NumDims);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const {
const size_t target_size = m_device.lastLevelCacheSize();
return internal::TensorBlockResourceRequirements::merge(
internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size), m_impl.getResourceRequirements());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
bool /*root_of_expr_ast*/ = false) const {
TensorBlockDesc arg_desc = desc.WithOffset(srcCoeff(desc.offset()));
TensorBlock block = m_impl.block(arg_desc, scratch);
if (!arg_desc.HasDestinationBuffer()) desc.DropDestinationBuffer();
return block;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Storage::Type data() const {
typename Storage::Type result = constCast(m_impl.data());
if (result) {
Index offset = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = 0; i < NumDims; ++i) {
if (m_dimensions[i] != m_impl.dimensions()[i]) {
offset += m_offsets[i] * m_inputStrides[i];
for (int j = i + 1; j < NumDims; ++j) {
if (m_dimensions[j] > 1) {
return NULL;
}
offset += m_offsets[j] * m_inputStrides[j];
}
break;
}
}
} else {
for (int i = NumDims - 1; i >= 0; --i) {
if (m_dimensions[i] != m_impl.dimensions()[i]) {
offset += m_offsets[i] * m_inputStrides[i];
for (int j = i - 1; j >= 0; --j) {
if (m_dimensions[j] > 1) {
return NULL;
}
offset += m_offsets[j] * m_inputStrides[j];
}
break;
}
}
}
return result + offset;
}
return NULL;
}
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const {
Index inputIndex = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
EIGEN_UNROLL_LOOP
for (int i = NumDims - 1; i > 0; --i) {
const Index idx = index / m_fastOutputStrides[i];
inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
inputIndex += (index + m_offsets[0]);
} else {
EIGEN_UNROLL_LOOP
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx = index / m_fastOutputStrides[i];
inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
inputIndex += (index + m_offsets[NumDims - 1]);
}
return inputIndex;
}
array<Index, NumDims> m_outputStrides;
array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
array<Index, NumDims> m_inputStrides;
TensorEvaluator<ArgType, Device> m_impl;
const Device EIGEN_DEVICE_REF m_device;
Dimensions m_dimensions;
bool m_is_identity;
const StartIndices m_offsets;
};
// Eval as lvalue
template <typename StartIndices, typename Sizes, typename ArgType, typename Device>
struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
: public TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> {
typedef TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> Base;
typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType;
static constexpr int NumDims = internal::array_size<Sizes>::value;
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
typedef Sizes Dimensions;
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
enum {
IsAligned = false,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess,
PreferBlockAccess = true,
CoordAccess = false,
RawAccess = (NumDims == 1) & TensorEvaluator<ArgType, Device>::RawAccess
};
typedef std::remove_const_t<Scalar> ScalarNoConst;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
//===--------------------------------------------------------------------===//
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) const {
if (this->m_is_identity) {
return this->m_impl.coeffRef(index);
} else {
return this->m_impl.coeffRef(this->srcCoeff(index));
}
}
template <int StoreMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) const {
if (this->m_is_identity) {
this->m_impl.template writePacket<StoreMode>(index, x);
return;
}
const int packetSize = PacketType<CoeffReturnType, Device>::size;
Index inputIndices[] = {0, 0};
Index indices[] = {index, index + packetSize - 1};
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
EIGEN_UNROLL_LOOP
for (int i = NumDims - 1; i > 0; --i) {
const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
indices[0] -= idx0 * this->m_outputStrides[i];
indices[1] -= idx1 * this->m_outputStrides[i];
}
inputIndices[0] += (indices[0] + this->m_offsets[0]);
inputIndices[1] += (indices[1] + this->m_offsets[0]);
} else {
EIGEN_UNROLL_LOOP
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
indices[0] -= idx0 * this->m_outputStrides[i];
indices[1] -= idx1 * this->m_outputStrides[i];
}
inputIndices[0] += (indices[0] + this->m_offsets[NumDims - 1]);
inputIndices[1] += (indices[1] + this->m_offsets[NumDims - 1]);
}
if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
this->m_impl.template writePacket<StoreMode>(inputIndices[0], x);
} else {
EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
this->m_impl.coeffRef(inputIndices[0]) = values[0];
this->m_impl.coeffRef(inputIndices[1]) = values[packetSize - 1];
EIGEN_UNROLL_LOOP
for (int i = 1; i < packetSize - 1; ++i) {
this->coeffRef(index + i) = values[i];
}
}
}
template <typename TensorBlock>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(const TensorBlockDesc& desc, const TensorBlock& block) {
TensorBlockDesc arg_desc = desc.WithOffset(this->srcCoeff(desc.offset()));
this->m_impl.writeBlock(arg_desc, block);
}
};
namespace internal {
template <typename StartIndices, typename StopIndices, typename Strides, typename XprType>
struct traits<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>> : public traits<XprType> {
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef std::remove_reference_t<Nested> Nested_;
static constexpr int NumDimensions = array_size<StartIndices>::value;
static constexpr int Layout = XprTraits::Layout;
typedef typename XprTraits::PointerType PointerType;
};
template <typename StartIndices, typename StopIndices, typename Strides, typename XprType>
struct eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Eigen::Dense> {
typedef const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> EIGEN_DEVICE_REF type;
};
template <typename StartIndices, typename StopIndices, typename Strides, typename XprType>
struct nested<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, 1,
typename eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>>::type> {
typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> type;
};
} // end namespace internal
template <typename StartIndices, typename StopIndices, typename Strides, typename XprType>
class TensorStridingSlicingOp
: public TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>> {
public:
typedef TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>> Base;
typedef typename internal::traits<TensorStridingSlicingOp>::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename internal::nested<TensorStridingSlicingOp>::type Nested;
typedef typename internal::traits<TensorStridingSlicingOp>::StorageKind StorageKind;
typedef typename internal::traits<TensorStridingSlicingOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp(const XprType& expr, const StartIndices& startIndices,
const StopIndices& stopIndices, const Strides& strides)
: m_xpr(expr), m_startIndices(startIndices), m_stopIndices(stopIndices), m_strides(strides) {}
EIGEN_DEVICE_FUNC const StartIndices& startIndices() const { return m_startIndices; }
EIGEN_DEVICE_FUNC const StartIndices& stopIndices() const { return m_stopIndices; }
EIGEN_DEVICE_FUNC const StartIndices& strides() const { return m_strides; }
EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; }
EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorStridingSlicingOp)
protected:
typename XprType::Nested m_xpr;
const StartIndices m_startIndices;
const StopIndices m_stopIndices;
const Strides m_strides;
};
// Eval as rvalue
template <typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> {
typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
static constexpr int NumDims = internal::array_size<Strides>::value;
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
typedef Strides Dimensions;
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
enum {
// Alignment can't be guaranteed at compile time since it depends on the
// slice offsets and sizes.
IsAligned = false,
PacketAccess = false,
BlockAccess = false,
PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess,
RawAccess = false
};
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlock;
//===--------------------------------------------------------------------===//
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_device(device), m_strides(op.strides()) {
// Handle degenerate intervals by gracefully clamping and allowing m_dimensions to be zero
DSizes<Index, NumDims> startIndicesClamped, stopIndicesClamped;
for (ptrdiff_t i = 0; i < internal::array_size<Dimensions>::value; ++i) {
eigen_assert(m_strides[i] != 0 && "0 stride is invalid");
if (m_strides[i] > 0) {
startIndicesClamped[i] = clamp(op.startIndices()[i], 0, m_impl.dimensions()[i]);
stopIndicesClamped[i] = clamp(op.stopIndices()[i], 0, m_impl.dimensions()[i]);
} else {
/* implies m_strides[i] < 0 by assert */
startIndicesClamped[i] = clamp(op.startIndices()[i], -1, m_impl.dimensions()[i] - 1);
stopIndicesClamped[i] = clamp(op.stopIndices()[i], -1, m_impl.dimensions()[i] - 1);
}
m_startIndices[i] = startIndicesClamped[i];
}
typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
const InputDimensions& input_dims = m_impl.dimensions();
// compute output tensor shape
m_is_identity = true;
for (int i = 0; i < NumDims; i++) {
Index interval = stopIndicesClamped[i] - startIndicesClamped[i];
if (interval == 0 || ((interval < 0) != (m_strides[i] < 0))) {
m_dimensions[i] = 0;
} else {
m_dimensions[i] = (interval / m_strides[i]) + (interval % m_strides[i] != 0 ? 1 : 0);
eigen_assert(m_dimensions[i] >= 0);
}
if (m_strides[i] != 1 || interval != m_impl.dimensions()[i]) {
m_is_identity = false;
}
}
Strides output_dims = m_dimensions;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_inputStrides[0] = m_strides[0];
m_offsets[0] = startIndicesClamped[0];
Index previousDimProduct = 1;
for (int i = 1; i < NumDims; ++i) {
previousDimProduct *= input_dims[i - 1];
m_inputStrides[i] = previousDimProduct * m_strides[i];
m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
}
// Don't initialize m_fastOutputStrides[0] since it won't ever be accessed.
m_outputStrides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
m_outputStrides[i] = m_outputStrides[i - 1] * output_dims[i - 1];
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : 1);
}
} else {
m_inputStrides[NumDims - 1] = m_strides[NumDims - 1];
m_offsets[NumDims - 1] = startIndicesClamped[NumDims - 1];
Index previousDimProduct = 1;
for (int i = NumDims - 2; i >= 0; --i) {
previousDimProduct *= input_dims[i + 1];
m_inputStrides[i] = previousDimProduct * m_strides[i];
m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
}
m_outputStrides[NumDims - 1] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
m_outputStrides[i] = m_outputStrides[i + 1] * output_dims[i + 1];
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : 1);
}
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
m_impl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
if (m_is_identity) {
return m_impl.coeff(index);
} else {
return m_impl.coeff(srcCoeff(index));
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, m_is_identity ? 1 : NumDims);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Storage::Type data() const { return NULL; }
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const {
Index inputIndex = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
EIGEN_UNROLL_LOOP
for (int i = NumDims - 1; i >= 0; --i) {
const Index idx = index / m_fastOutputStrides[i];
inputIndex += idx * m_inputStrides[i] + m_offsets[i];
index -= idx * m_outputStrides[i];
}
} else {
EIGEN_UNROLL_LOOP
for (int i = 0; i < NumDims; ++i) {
const Index idx = index / m_fastOutputStrides[i];
inputIndex += idx * m_inputStrides[i] + m_offsets[i];
index -= idx * m_outputStrides[i];
}
}
return inputIndex;
}
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index clamp(Index value, Index min, Index max) {
#ifndef SYCL_DEVICE_ONLY
return numext::maxi(min, numext::mini(max, value));
#else
return cl::sycl::clamp(value, min, max);
#endif
}
array<Index, NumDims> m_outputStrides;
array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
array<Index, NumDims> m_inputStrides;
bool m_is_identity;
TensorEvaluator<ArgType, Device> m_impl;
const Device EIGEN_DEVICE_REF m_device;
DSizes<Index, NumDims> m_startIndices; // clamped startIndices
DSizes<Index, NumDims> m_dimensions;
DSizes<Index, NumDims> m_offsets; // offset in a flattened shape
const Strides m_strides;
};
// Eval as lvalue
template <typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
struct TensorEvaluator<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
: public TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> {
typedef TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> Base;
typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
static constexpr int NumDims = internal::array_size<Strides>::value;
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
enum {
IsAligned = false,
PacketAccess = false,
BlockAccess = false,
PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess,
CoordAccess = TensorEvaluator<ArgType, Device>::CoordAccess,
RawAccess = false
};
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlock;
//===--------------------------------------------------------------------===//
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {}
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
typedef Strides Dimensions;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) const {
if (this->m_is_identity) {
return this->m_impl.coeffRef(index);
} else {
return this->m_impl.coeffRef(this->srcCoeff(index));
}
}
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H