| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \class TensorShuffling |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief Tensor shuffling class. |
| * |
| * |
| */ |
| namespace internal { |
| template <typename Shuffle, typename XprType> |
| struct traits<TensorShufflingOp<Shuffle, XprType> > : public traits<XprType> { |
| typedef typename XprType::Scalar Scalar; |
| typedef traits<XprType> XprTraits; |
| typedef typename XprTraits::StorageKind StorageKind; |
| typedef typename XprTraits::Index Index; |
| typedef typename XprType::Nested Nested; |
| typedef std::remove_reference_t<Nested> Nested_; |
| static constexpr int NumDimensions = XprTraits::NumDimensions; |
| static constexpr int Layout = XprTraits::Layout; |
| typedef typename XprTraits::PointerType PointerType; |
| }; |
| |
| template <typename Shuffle, typename XprType> |
| struct eval<TensorShufflingOp<Shuffle, XprType>, Eigen::Dense> { |
| typedef const TensorShufflingOp<Shuffle, XprType>& type; |
| }; |
| |
| template <typename Shuffle, typename XprType> |
| struct nested<TensorShufflingOp<Shuffle, XprType>, 1, typename eval<TensorShufflingOp<Shuffle, XprType> >::type> { |
| typedef TensorShufflingOp<Shuffle, XprType> type; |
| }; |
| |
| } // end namespace internal |
| |
| template <typename Shuffle, typename XprType> |
| class TensorShufflingOp : public TensorBase<TensorShufflingOp<Shuffle, XprType> > { |
| public: |
| typedef TensorBase<TensorShufflingOp<Shuffle, XprType> > Base; |
| typedef typename Eigen::internal::traits<TensorShufflingOp>::Scalar Scalar; |
| typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename Eigen::internal::nested<TensorShufflingOp>::type Nested; |
| typedef typename Eigen::internal::traits<TensorShufflingOp>::StorageKind StorageKind; |
| typedef typename Eigen::internal::traits<TensorShufflingOp>::Index Index; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp(const XprType& expr, const Shuffle& shfl) |
| : m_xpr(expr), m_shuffle(shfl) {} |
| |
| EIGEN_DEVICE_FUNC const Shuffle& shufflePermutation() const { return m_shuffle; } |
| |
| EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; } |
| |
| EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorShufflingOp) |
| |
| protected: |
| typename XprType::Nested m_xpr; |
| const Shuffle m_shuffle; |
| }; |
| |
| // Eval as rvalue |
| template <typename Shuffle, typename ArgType, typename Device> |
| struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> { |
| typedef TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> Self; |
| typedef TensorShufflingOp<Shuffle, ArgType> XprType; |
| typedef typename XprType::Index Index; |
| static constexpr int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; |
| typedef DSizes<Index, NumDims> Dimensions; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size; |
| typedef StorageMemory<CoeffReturnType, Device> Storage; |
| typedef typename Storage::Type EvaluatorPointerType; |
| |
| static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout; |
| enum { |
| IsAligned = false, |
| PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), |
| BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess, |
| PreferBlockAccess = true, |
| CoordAccess = false, // to be implemented |
| RawAccess = false |
| }; |
| |
| typedef std::remove_const_t<Scalar> ScalarNoConst; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; |
| typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; |
| |
| typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims, Layout, Index> TensorBlock; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) |
| : m_device(device), m_impl(op.expression(), device) { |
| const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); |
| const Shuffle& shuffle = op.shufflePermutation(); |
| m_is_identity = true; |
| for (int i = 0; i < NumDims; ++i) { |
| m_shuffle[i] = static_cast<int>(shuffle[i]); |
| m_dimensions[i] = input_dims[shuffle[i]]; |
| m_inverseShuffle[shuffle[i]] = i; |
| if (m_is_identity && shuffle[i] != i) { |
| m_is_identity = false; |
| } |
| } |
| |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| m_unshuffledInputStrides[0] = 1; |
| m_outputStrides[0] = 1; |
| |
| for (int i = 1; i < NumDims; ++i) { |
| m_unshuffledInputStrides[i] = m_unshuffledInputStrides[i - 1] * input_dims[i - 1]; |
| m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1]; |
| m_fastOutputStrides[i] = |
| internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : Index(1)); |
| } |
| } else { |
| m_unshuffledInputStrides[NumDims - 1] = 1; |
| m_outputStrides[NumDims - 1] = 1; |
| for (int i = NumDims - 2; i >= 0; --i) { |
| m_unshuffledInputStrides[i] = m_unshuffledInputStrides[i + 1] * input_dims[i + 1]; |
| m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1]; |
| m_fastOutputStrides[i] = |
| internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : Index(1)); |
| } |
| } |
| |
| for (int i = 0; i < NumDims; ++i) { |
| m_inputStrides[i] = m_unshuffledInputStrides[shuffle[i]]; |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } |
| |
| EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) { |
| m_impl.evalSubExprsIfNeeded(NULL); |
| return true; |
| } |
| |
| #ifdef EIGEN_USE_THREADS |
| template <typename EvalSubExprsCallback> |
| EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType, EvalSubExprsCallback done) { |
| m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); }); |
| } |
| #endif // EIGEN_USE_THREADS |
| |
| EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { |
| if (m_is_identity) { |
| return m_impl.coeff(index); |
| } else { |
| return m_impl.coeff(srcCoeff(index)); |
| } |
| } |
| |
| template <int LoadMode, typename Self, bool ImplPacketAccess> |
| struct PacketLoader { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static PacketReturnType Run(const Self& self, Index index) { |
| EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize]; |
| EIGEN_UNROLL_LOOP |
| for (int i = 0; i < PacketSize; ++i) { |
| values[i] = self.coeff(index + i); |
| } |
| PacketReturnType rslt = internal::pload<PacketReturnType>(values); |
| return rslt; |
| } |
| }; |
| |
| template <int LoadMode, typename Self> |
| struct PacketLoader<LoadMode, Self, true> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static PacketReturnType Run(const Self& self, Index index) { |
| if (self.m_is_identity) { |
| return self.m_impl.template packet<LoadMode>(index); |
| } else { |
| EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize]; |
| EIGEN_UNROLL_LOOP |
| for (int i = 0; i < PacketSize; ++i) { |
| values[i] = self.coeff(index + i); |
| } |
| PacketReturnType rslt = internal::pload<PacketReturnType>(values); |
| return rslt; |
| } |
| } |
| }; |
| |
| template <int LoadMode> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { |
| eigen_assert(index + PacketSize - 1 < dimensions().TotalSize()); |
| return PacketLoader<LoadMode, Self, TensorEvaluator<ArgType, Device>::PacketAccess>::Run(*this, index); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const { |
| static const int inner_dim = Layout == static_cast<int>(ColMajor) ? 0 : NumDims - 1; |
| |
| const size_t target_size = m_device.firstLevelCacheSize(); |
| const bool inner_dim_shuffled = m_shuffle[inner_dim] != inner_dim; |
| |
| // Shuffled inner dimensions leads to a random memory access, which is not |
| // captured by default cost model bytes loaded/stored. We add this cost |
| // explicitly. The number of cycles picked based on the benchmarks. |
| // TODO(ezhulenev): This number was picked based on a very questionable |
| // benchmarks, add benchmarks that are representative of real workloads. |
| using BlockRequirements = internal::TensorBlockResourceRequirements; |
| if (inner_dim_shuffled) { |
| return BlockRequirements::uniform<Scalar>(target_size).addCostPerCoeff({0, 0, NumDims * 28}); |
| } else { |
| return BlockRequirements::skewed<Scalar>(target_size); |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch, |
| bool root_of_expr_ast = false) const { |
| eigen_assert(m_impl.data() != NULL); |
| |
| typedef internal::TensorBlockIO<ScalarNoConst, Index, NumDims, Layout> TensorBlockIO; |
| typedef typename TensorBlockIO::Dst TensorBlockIODst; |
| typedef typename TensorBlockIO::Src TensorBlockIOSrc; |
| |
| const typename TensorBlock::Storage block_storage = |
| TensorBlock::prepareStorage(desc, scratch, /*allow_strided_storage=*/root_of_expr_ast); |
| |
| typename TensorBlockIO::Dimensions input_strides(m_unshuffledInputStrides); |
| TensorBlockIOSrc src(input_strides, m_impl.data(), srcCoeff(desc.offset())); |
| |
| TensorBlockIODst dst(block_storage.dimensions(), block_storage.strides(), block_storage.data()); |
| |
| typename TensorBlockIO::DimensionsMap dst_to_src_dim_map(m_shuffle); |
| TensorBlockIO::Copy(dst, src, dst_to_src_dim_map); |
| |
| return block_storage.AsTensorMaterializedBlock(); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { |
| const double compute_cost = m_is_identity |
| ? TensorOpCost::AddCost<Index>() |
| : NumDims * (2 * TensorOpCost::AddCost<Index>() + |
| 2 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>()); |
| return m_impl.costPerCoeff(vectorized) + |
| TensorOpCost(0, 0, compute_cost, m_is_identity /* vectorized */, PacketSize); |
| } |
| |
| EIGEN_DEVICE_FUNC typename Storage::Type data() const { return NULL; } |
| |
| protected: |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index |
| GetBlockOutputIndex(Index input_index, const DSizes<Index, NumDims>& input_block_strides, |
| const DSizes<Index, NumDims>& output_block_strides, |
| const DSizes<internal::TensorIntDivisor<Index>, NumDims>& fast_input_block_strides) const { |
| Index output_index = 0; |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| for (int i = NumDims - 1; i > 0; --i) { |
| const Index idx = input_index / fast_input_block_strides[i]; |
| output_index += idx * output_block_strides[m_inverseShuffle[i]]; |
| input_index -= idx * input_block_strides[i]; |
| } |
| return output_index + input_index * output_block_strides[m_inverseShuffle[0]]; |
| } else { |
| for (int i = 0; i < NumDims - 1; ++i) { |
| const Index idx = input_index / fast_input_block_strides[i]; |
| output_index += idx * output_block_strides[m_inverseShuffle[i]]; |
| input_index -= idx * input_block_strides[i]; |
| } |
| return output_index + input_index * output_block_strides[m_inverseShuffle[NumDims - 1]]; |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { |
| Index inputIndex = 0; |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| for (int i = NumDims - 1; i > 0; --i) { |
| const Index idx = index / m_fastOutputStrides[i]; |
| inputIndex += idx * m_inputStrides[i]; |
| index -= idx * m_outputStrides[i]; |
| } |
| return inputIndex + index * m_inputStrides[0]; |
| } else { |
| for (int i = 0; i < NumDims - 1; ++i) { |
| const Index idx = index / m_fastOutputStrides[i]; |
| inputIndex += idx * m_inputStrides[i]; |
| index -= idx * m_outputStrides[i]; |
| } |
| return inputIndex + index * m_inputStrides[NumDims - 1]; |
| } |
| } |
| |
| Dimensions m_dimensions; |
| bool m_is_identity; |
| array<int, NumDims> m_shuffle; |
| array<Index, NumDims> m_inverseShuffle; // TODO(ezhulenev): Make it int type. |
| array<Index, NumDims> m_outputStrides; |
| array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides; |
| array<Index, NumDims> m_inputStrides; |
| array<Index, NumDims> m_unshuffledInputStrides; |
| |
| const Device EIGEN_DEVICE_REF m_device; |
| TensorEvaluator<ArgType, Device> m_impl; |
| }; |
| |
| // Eval as lvalue |
| template <typename Shuffle, typename ArgType, typename Device> |
| struct TensorEvaluator<TensorShufflingOp<Shuffle, ArgType>, Device> |
| : public TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> { |
| typedef TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> Base; |
| |
| typedef TensorShufflingOp<Shuffle, ArgType> XprType; |
| typedef typename XprType::Index Index; |
| static constexpr int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; |
| typedef DSizes<Index, NumDims> Dimensions; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size; |
| static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout; |
| |
| enum { |
| IsAligned = false, |
| PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), |
| BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess, |
| PreferBlockAccess = true, |
| RawAccess = false |
| }; |
| |
| typedef std::remove_const_t<Scalar> ScalarNoConst; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) const { |
| return this->m_impl.coeffRef(this->srcCoeff(index)); |
| } |
| |
| template <int StoreMode> |
| EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) const { |
| EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize]; |
| internal::pstore<CoeffReturnType, PacketReturnType>(values, x); |
| EIGEN_UNROLL_LOOP |
| for (int i = 0; i < PacketSize; ++i) { |
| this->coeffRef(index + i) = values[i]; |
| } |
| } |
| |
| template <typename TensorBlock> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(const TensorBlockDesc& desc, const TensorBlock& block) { |
| eigen_assert(this->m_impl.data() != NULL); |
| |
| typedef internal::TensorBlockIO<ScalarNoConst, Index, NumDims, Layout> TensorBlockIO; |
| typedef typename TensorBlockIO::Dst TensorBlockIODst; |
| typedef typename TensorBlockIO::Src TensorBlockIOSrc; |
| |
| const Scalar* block_buffer = block.data(); |
| |
| // TODO(ezhulenev): TensorBlockIO should be able to read from any Eigen |
| // expression with coefficient and packet access as `src`. |
| void* mem = NULL; |
| if (block_buffer == NULL) { |
| mem = this->m_device.allocate(desc.size() * sizeof(Scalar)); |
| ScalarNoConst* buf = static_cast<ScalarNoConst*>(mem); |
| |
| typedef internal::TensorBlockAssignment<ScalarNoConst, NumDims, typename TensorBlock::XprType, Index> |
| TensorBlockAssignment; |
| |
| TensorBlockAssignment::Run( |
| TensorBlockAssignment::target(desc.dimensions(), internal::strides<Layout>(desc.dimensions()), buf), |
| block.expr()); |
| |
| block_buffer = buf; |
| } |
| |
| // Read from block. |
| TensorBlockIOSrc src(internal::strides<Layout>(desc.dimensions()), block_buffer); |
| |
| // Write to the output buffer. |
| typename TensorBlockIO::Dimensions output_strides(this->m_unshuffledInputStrides); |
| typename TensorBlockIO::Dimensions output_dimensions; |
| for (int i = 0; i < NumDims; ++i) { |
| output_dimensions[this->m_shuffle[i]] = desc.dimension(i); |
| } |
| TensorBlockIODst dst(output_dimensions, output_strides, this->m_impl.data(), this->srcCoeff(desc.offset())); |
| |
| // Reorder dimensions according to the shuffle. |
| typename TensorBlockIO::DimensionsMap dst_to_src_dim_map; |
| for (int i = 0; i < NumDims; ++i) { |
| dst_to_src_dim_map[i] = static_cast<int>(this->m_inverseShuffle[i]); |
| } |
| TensorBlockIO::Copy(dst, src, dst_to_src_dim_map); |
| |
| // Deallocate temporary buffer used for the block materialization. |
| if (mem != NULL) this->m_device.deallocate(mem); |
| } |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H |