blob: 017b4ff634032950e9766bfa7776c036e93a1af2 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H
#define EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename Scalar, int Options>
class compute_tensor_flags {
enum {
is_dynamic_size_storage = 1,
is_aligned = (((Options & DontAlign) == 0) && (
#if EIGEN_MAX_STATIC_ALIGN_BYTES > 0
(!is_dynamic_size_storage)
#else
0
#endif
|
#if EIGEN_MAX_ALIGN_BYTES > 0
is_dynamic_size_storage
#else
0
#endif
)),
packet_access_bit = packet_traits<Scalar>::Vectorizable && is_aligned ? PacketAccessBit : 0
};
public:
enum { ret = packet_access_bit };
};
template <typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
struct traits<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > {
typedef Scalar_ Scalar;
typedef Dense StorageKind;
typedef IndexType_ Index;
static constexpr int NumDimensions = NumIndices_;
static constexpr int Layout = Options_ & RowMajor ? RowMajor : ColMajor;
enum {
Options = Options_,
Flags = compute_tensor_flags<Scalar_, Options_>::ret | (is_const<Scalar_>::value ? 0 : LvalueBit)
};
template <typename T>
struct MakePointer {
typedef T* Type;
};
typedef typename MakePointer<Scalar>::Type PointerType;
};
template <typename Scalar_, typename Dimensions, int Options_, typename IndexType_>
struct traits<TensorFixedSize<Scalar_, Dimensions, Options_, IndexType_> > {
typedef Scalar_ Scalar;
typedef Dense StorageKind;
typedef IndexType_ Index;
static constexpr int NumDimensions = array_size<Dimensions>::value;
static constexpr int Layout = Options_ & RowMajor ? RowMajor : ColMajor;
enum {
Options = Options_,
Flags = compute_tensor_flags<Scalar_, Options_>::ret | (is_const<Scalar_>::value ? 0 : LvalueBit)
};
template <typename T>
struct MakePointer {
typedef T* Type;
};
typedef typename MakePointer<Scalar>::Type PointerType;
};
template <typename PlainObjectType, int Options_, template <class> class MakePointer_>
struct traits<TensorMap<PlainObjectType, Options_, MakePointer_> > : public traits<PlainObjectType> {
typedef traits<PlainObjectType> BaseTraits;
typedef typename BaseTraits::Scalar Scalar;
typedef typename BaseTraits::StorageKind StorageKind;
typedef typename BaseTraits::Index Index;
static constexpr int NumDimensions = BaseTraits::NumDimensions;
static constexpr int Layout = BaseTraits::Layout;
enum { Options = Options_, Flags = BaseTraits::Flags };
template <class T>
struct MakePointer {
// Intermediate typedef to workaround MSVC issue.
typedef MakePointer_<T> MakePointerT;
typedef typename MakePointerT::Type Type;
};
typedef typename MakePointer<Scalar>::Type PointerType;
};
template <typename PlainObjectType>
struct traits<TensorRef<PlainObjectType> > : public traits<PlainObjectType> {
typedef traits<PlainObjectType> BaseTraits;
typedef typename BaseTraits::Scalar Scalar;
typedef typename BaseTraits::StorageKind StorageKind;
typedef typename BaseTraits::Index Index;
static constexpr int NumDimensions = BaseTraits::NumDimensions;
static constexpr int Layout = BaseTraits::Layout;
enum { Options = BaseTraits::Options, Flags = BaseTraits::Flags };
typedef typename BaseTraits::PointerType PointerType;
};
template <typename Scalar_, int NumIndices_, int Options, typename IndexType_>
struct eval<Tensor<Scalar_, NumIndices_, Options, IndexType_>, Eigen::Dense> {
typedef const Tensor<Scalar_, NumIndices_, Options, IndexType_> EIGEN_DEVICE_REF type;
};
template <typename Scalar_, int NumIndices_, int Options, typename IndexType_>
struct eval<const Tensor<Scalar_, NumIndices_, Options, IndexType_>, Eigen::Dense> {
typedef const Tensor<Scalar_, NumIndices_, Options, IndexType_> EIGEN_DEVICE_REF type;
};
template <typename Scalar_, typename Dimensions, int Options, typename IndexType_>
struct eval<TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>, Eigen::Dense> {
typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> EIGEN_DEVICE_REF type;
};
template <typename Scalar_, typename Dimensions, int Options, typename IndexType_>
struct eval<const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>, Eigen::Dense> {
typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> EIGEN_DEVICE_REF type;
};
template <typename PlainObjectType, int Options, template <class> class MakePointer>
struct eval<TensorMap<PlainObjectType, Options, MakePointer>, Eigen::Dense> {
typedef const TensorMap<PlainObjectType, Options, MakePointer> EIGEN_DEVICE_REF type;
};
template <typename PlainObjectType, int Options, template <class> class MakePointer>
struct eval<const TensorMap<PlainObjectType, Options, MakePointer>, Eigen::Dense> {
typedef const TensorMap<PlainObjectType, Options, MakePointer> EIGEN_DEVICE_REF type;
};
template <typename PlainObjectType>
struct eval<TensorRef<PlainObjectType>, Eigen::Dense> {
typedef const TensorRef<PlainObjectType> EIGEN_DEVICE_REF type;
};
template <typename PlainObjectType>
struct eval<const TensorRef<PlainObjectType>, Eigen::Dense> {
typedef const TensorRef<PlainObjectType> EIGEN_DEVICE_REF type;
};
// TODO nested<> does not exist anymore in Eigen/Core, and it thus has to be removed in favor of ref_selector.
template <typename T, int n = 1, typename PlainObject = void>
struct nested {
typedef typename ref_selector<T>::type type;
};
template <typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
struct nested<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > {
typedef const Tensor<Scalar_, NumIndices_, Options_, IndexType_> EIGEN_DEVICE_REF type;
};
template <typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
struct nested<const Tensor<Scalar_, NumIndices_, Options_, IndexType_> > {
typedef const Tensor<Scalar_, NumIndices_, Options_, IndexType_> EIGEN_DEVICE_REF type;
};
template <typename Scalar_, typename Dimensions, int Options, typename IndexType_>
struct nested<TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> > {
typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> EIGEN_DEVICE_REF type;
};
template <typename Scalar_, typename Dimensions, int Options, typename IndexType_>
struct nested<const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> > {
typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> EIGEN_DEVICE_REF type;
};
template <typename PlainObjectType>
struct nested<TensorRef<PlainObjectType> > {
typedef const TensorRef<PlainObjectType> EIGEN_DEVICE_REF type;
};
template <typename PlainObjectType>
struct nested<const TensorRef<PlainObjectType> > {
typedef const TensorRef<PlainObjectType> EIGEN_DEVICE_REF type;
};
} // end namespace internal
// Convolutional layers take in an input tensor of shape (D, R, C, B), or (D, C,
// R, B), and convolve it with a set of filters, which can also be presented as
// a tensor (D, K, K, M), where M is the number of filters, K is the filter
// size, and each 3-dimensional tensor of size (D, K, K) is a filter. For
// simplicity we assume that we always use square filters (which is usually the
// case in images), hence the two Ks in the tensor dimension. It also takes in
// a few additional parameters:
// Stride (S): The convolution stride is the offset between locations where we
// apply the filters. A larger stride means that the output will be
// spatially smaller.
// Padding (P): The padding we apply to the input tensor along the R and C
// dimensions. This is usually used to make sure that the spatial
// dimensions of the output matches our intention.
//
// Two types of padding are often used:
// SAME: The pad value is computed so that the output will have size
// R/S and C/S.
// VALID: no padding is carried out.
// When we do padding, the padded values at the padded locations are usually
// zero.
//
// The output dimensions for convolution, when given all the parameters above,
// are as follows:
// When Padding = SAME: the output size is (B, R', C', M), where
// R' = ceil(float(R) / float(S))
// C' = ceil(float(C) / float(S))
// where ceil is the ceiling function. The input tensor is padded with 0 as
// needed. The number of padded rows and columns are computed as:
// Pr = ((R' - 1) * S + K - R) / 2
// Pc = ((C' - 1) * S + K - C) / 2
// when the stride is 1, we have the simplified case R'=R, C'=C, Pr=Pc=(K-1)/2.
// This is where SAME comes from - the output has the same size as the input has.
// When Padding = VALID: the output size is computed as
// R' = ceil(float(R - K + 1) / float(S))
// C' = ceil(float(C - K + 1) / float(S))
// and the number of padded rows and columns are computed in the same way as in
// the SAME case.
// When the stride is 1, we have the simplified case R'=R-K+1, C'=C-K+1, Pr=0,
// Pc=0.
enum PaddingType { PADDING_VALID = 1, PADDING_SAME = 2 };
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H