blob: 0e040ad706bb0ce21c1631d50a486281e4874a0a [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/FFT>
template <typename T>
inline std::complex<T> RandomCpx() {
return std::complex<T>((T)(rand() / (T)RAND_MAX - .5), (T)(rand() / (T)RAND_MAX - .5));
}
using namespace std;
using namespace Eigen;
template <typename T>
inline complex<long double> promote(complex<T> x) {
return complex<long double>((long double)x.real(), (long double)x.imag());
}
inline complex<long double> promote(float x) { return complex<long double>((long double)x); }
inline complex<long double> promote(double x) { return complex<long double>((long double)x); }
inline complex<long double> promote(long double x) { return complex<long double>((long double)x); }
template <typename VT1, typename VT2>
long double fft_rmse(const VT1& fftbuf, const VT2& timebuf) {
long double totalpower = 0;
long double difpower = 0;
long double pi = acos((long double)-1);
for (size_t k0 = 0; k0 < (size_t)fftbuf.size(); ++k0) {
complex<long double> acc = 0;
long double phinc = (long double)(-2.) * k0 * pi / timebuf.size();
for (size_t k1 = 0; k1 < (size_t)timebuf.size(); ++k1) {
acc += promote(timebuf[k1]) * exp(complex<long double>(0, k1 * phinc));
}
totalpower += numext::abs2(acc);
complex<long double> x = promote(fftbuf[k0]);
complex<long double> dif = acc - x;
difpower += numext::abs2(dif);
// cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(numext::abs2(dif)) << endl;
}
// cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
return sqrt(difpower / totalpower);
}
template <typename VT1, typename VT2>
long double dif_rmse(const VT1 buf1, const VT2 buf2) {
long double totalpower = 0;
long double difpower = 0;
size_t n = (min)(buf1.size(), buf2.size());
for (size_t k = 0; k < n; ++k) {
totalpower += (long double)((numext::abs2(buf1[k]) + numext::abs2(buf2[k])) / 2);
difpower += (long double)(numext::abs2(buf1[k] - buf2[k]));
}
return sqrt(difpower / totalpower);
}
enum { StdVectorContainer, EigenVectorContainer };
template <int Container, typename Scalar>
struct VectorType;
template <typename Scalar>
struct VectorType<StdVectorContainer, Scalar> {
typedef vector<Scalar> type;
};
template <typename Scalar>
struct VectorType<EigenVectorContainer, Scalar> {
typedef Matrix<Scalar, Dynamic, 1> type;
};
template <int Container, typename T>
void test_scalar_generic(int nfft) {
typedef typename FFT<T>::Complex Complex;
typedef typename FFT<T>::Scalar Scalar;
typedef typename VectorType<Container, Scalar>::type ScalarVector;
typedef typename VectorType<Container, Complex>::type ComplexVector;
FFT<T> fft;
ScalarVector tbuf(nfft);
ComplexVector freqBuf;
for (int k = 0; k < nfft; ++k) tbuf[k] = (T)(rand() / (double)RAND_MAX - .5);
// make sure it DOESN'T give the right full spectrum answer
// if we've asked for half-spectrum
fft.SetFlag(fft.HalfSpectrum);
fft.fwd(freqBuf, tbuf);
VERIFY((size_t)freqBuf.size() == (size_t)((nfft >> 1) + 1));
VERIFY(T(fft_rmse(freqBuf, tbuf)) < test_precision<T>()); // gross check
fft.ClearFlag(fft.HalfSpectrum);
fft.fwd(freqBuf, tbuf);
VERIFY((size_t)freqBuf.size() == (size_t)nfft);
VERIFY(T(fft_rmse(freqBuf, tbuf)) < test_precision<T>()); // gross check
if (nfft & 1) return; // odd FFTs get the wrong size inverse FFT
ScalarVector tbuf2;
fft.inv(tbuf2, freqBuf);
VERIFY(T(dif_rmse(tbuf, tbuf2)) < test_precision<T>()); // gross check
// verify that the Unscaled flag takes effect
ScalarVector tbuf3;
fft.SetFlag(fft.Unscaled);
fft.inv(tbuf3, freqBuf);
for (int k = 0; k < nfft; ++k) tbuf3[k] *= T(1. / nfft);
// for (size_t i=0;i<(size_t) tbuf.size();++i)
// cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] -
// tbuf[i] ) << endl;
VERIFY(T(dif_rmse(tbuf, tbuf3)) < test_precision<T>()); // gross check
// verify that ClearFlag works
fft.ClearFlag(fft.Unscaled);
fft.inv(tbuf2, freqBuf);
VERIFY(T(dif_rmse(tbuf, tbuf2)) < test_precision<T>()); // gross check
}
template <typename T>
void test_scalar(int nfft) {
test_scalar_generic<StdVectorContainer, T>(nfft);
// test_scalar_generic<EigenVectorContainer,T>(nfft);
}
template <int Container, typename T>
void test_complex_generic(int nfft) {
typedef typename FFT<T>::Complex Complex;
typedef typename VectorType<Container, Complex>::type ComplexVector;
FFT<T> fft;
ComplexVector inbuf(nfft);
ComplexVector outbuf;
ComplexVector buf3;
for (int k = 0; k < nfft; ++k)
inbuf[k] = Complex((T)(rand() / (double)RAND_MAX - .5), (T)(rand() / (double)RAND_MAX - .5));
fft.fwd(outbuf, inbuf);
VERIFY(T(fft_rmse(outbuf, inbuf)) < test_precision<T>()); // gross check
fft.inv(buf3, outbuf);
VERIFY(T(dif_rmse(inbuf, buf3)) < test_precision<T>()); // gross check
// verify that the Unscaled flag takes effect
ComplexVector buf4;
fft.SetFlag(fft.Unscaled);
fft.inv(buf4, outbuf);
for (int k = 0; k < nfft; ++k) buf4[k] *= T(1. / nfft);
VERIFY(T(dif_rmse(inbuf, buf4)) < test_precision<T>()); // gross check
// verify that ClearFlag works
fft.ClearFlag(fft.Unscaled);
fft.inv(buf3, outbuf);
VERIFY(T(dif_rmse(inbuf, buf3)) < test_precision<T>()); // gross check
}
template <typename T>
void test_complex(int nfft) {
test_complex_generic<StdVectorContainer, T>(nfft);
test_complex_generic<EigenVectorContainer, T>(nfft);
}
template <typename T, int nrows, int ncols>
void test_complex2d() {
typedef typename Eigen::FFT<T>::Complex Complex;
FFT<T> fft;
Eigen::Matrix<Complex, nrows, ncols> src, src2, dst, dst2;
src = Eigen::Matrix<Complex, nrows, ncols>::Random();
// src = Eigen::Matrix<Complex,nrows,ncols>::Identity();
for (int k = 0; k < ncols; k++) {
Eigen::Matrix<Complex, nrows, 1> tmpOut;
fft.fwd(tmpOut, src.col(k));
dst2.col(k) = tmpOut;
}
for (int k = 0; k < nrows; k++) {
Eigen::Matrix<Complex, 1, ncols> tmpOut;
fft.fwd(tmpOut, dst2.row(k));
dst2.row(k) = tmpOut;
}
fft.fwd2(dst.data(), src.data(), ncols, nrows);
fft.inv2(src2.data(), dst.data(), ncols, nrows);
VERIFY((src - src2).norm() < test_precision<T>());
VERIFY((dst - dst2).norm() < test_precision<T>());
}
inline void test_return_by_value(int len) {
VectorXf in;
VectorXf in1;
in.setRandom(len);
VectorXcf out1, out2;
FFT<float> fft;
fft.SetFlag(fft.HalfSpectrum);
fft.fwd(out1, in);
out2 = fft.fwd(in);
VERIFY((out1 - out2).norm() < test_precision<float>());
in1 = fft.inv(out1);
VERIFY((in1 - in).norm() < test_precision<float>());
}
EIGEN_DECLARE_TEST(FFTW) {
CALL_SUBTEST(test_return_by_value(32));
CALL_SUBTEST(test_complex<float>(32));
CALL_SUBTEST(test_complex<double>(32));
CALL_SUBTEST(test_complex<float>(256));
CALL_SUBTEST(test_complex<double>(256));
CALL_SUBTEST(test_complex<float>(3 * 8));
CALL_SUBTEST(test_complex<double>(3 * 8));
CALL_SUBTEST(test_complex<float>(5 * 32));
CALL_SUBTEST(test_complex<double>(5 * 32));
CALL_SUBTEST(test_complex<float>(2 * 3 * 4));
CALL_SUBTEST(test_complex<double>(2 * 3 * 4));
CALL_SUBTEST(test_complex<float>(2 * 3 * 4 * 5));
CALL_SUBTEST(test_complex<double>(2 * 3 * 4 * 5));
CALL_SUBTEST(test_complex<float>(2 * 3 * 4 * 5 * 7));
CALL_SUBTEST(test_complex<double>(2 * 3 * 4 * 5 * 7));
CALL_SUBTEST(test_scalar<float>(32));
CALL_SUBTEST(test_scalar<double>(32));
CALL_SUBTEST(test_scalar<float>(45));
CALL_SUBTEST(test_scalar<double>(45));
CALL_SUBTEST(test_scalar<float>(50));
CALL_SUBTEST(test_scalar<double>(50));
CALL_SUBTEST(test_scalar<float>(256));
CALL_SUBTEST(test_scalar<double>(256));
CALL_SUBTEST(test_scalar<float>(2 * 3 * 4 * 5 * 7));
CALL_SUBTEST(test_scalar<double>(2 * 3 * 4 * 5 * 7));
#if defined EIGEN_HAS_FFTWL || defined EIGEN_POCKETFFT_DEFAULT
CALL_SUBTEST(test_complex<long double>(32));
CALL_SUBTEST(test_complex<long double>(256));
CALL_SUBTEST(test_complex<long double>(3 * 8));
CALL_SUBTEST(test_complex<long double>(5 * 32));
CALL_SUBTEST(test_complex<long double>(2 * 3 * 4));
CALL_SUBTEST(test_complex<long double>(2 * 3 * 4 * 5));
CALL_SUBTEST(test_complex<long double>(2 * 3 * 4 * 5 * 7));
CALL_SUBTEST(test_scalar<long double>(32));
CALL_SUBTEST(test_scalar<long double>(45));
CALL_SUBTEST(test_scalar<long double>(50));
CALL_SUBTEST(test_scalar<long double>(256));
CALL_SUBTEST(test_scalar<long double>(2 * 3 * 4 * 5 * 7));
CALL_SUBTEST((test_complex2d<long double, 2 * 3 * 4, 2 * 3 * 4>()));
CALL_SUBTEST((test_complex2d<long double, 3 * 4 * 5, 3 * 4 * 5>()));
CALL_SUBTEST((test_complex2d<long double, 24, 60>()));
CALL_SUBTEST((test_complex2d<long double, 60, 24>()));
// fail to build since Eigen limit the stack allocation size,too big here.
// CALL_SUBTEST( ( test_complex2d<long double, 256, 256> () ) );
#endif
#if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT
CALL_SUBTEST((test_complex2d<float, 24, 24>()));
CALL_SUBTEST((test_complex2d<float, 60, 60>()));
CALL_SUBTEST((test_complex2d<float, 24, 60>()));
CALL_SUBTEST((test_complex2d<float, 60, 24>()));
#endif
#if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT
CALL_SUBTEST((test_complex2d<double, 24, 24>()));
CALL_SUBTEST((test_complex2d<double, 60, 60>()));
CALL_SUBTEST((test_complex2d<double, 24, 60>()));
CALL_SUBTEST((test_complex2d<double, 60, 24>()));
#endif
}