blob: 9b8974742b3834436b0ba998ad759b7083198b2d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2016 Konstantinos Margaritis <markos@freevec.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMPLEX32_ZVECTOR_H
#define EIGEN_COMPLEX32_ZVECTOR_H
// IWYU pragma: private
#include "../../InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ >= 12)
static Packet4ui p4ui_CONJ_XOR = {0x00000000, 0x80000000, 0x00000000,
0x80000000}; // vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_MZERO);
#endif
static Packet2ul p2ul_CONJ_XOR1 =
(Packet2ul)vec_sld((Packet4ui)p2d_ZERO_, (Packet4ui)p2l_ZERO, 8); //{ 0x8000000000000000, 0x0000000000000000 };
static Packet2ul p2ul_CONJ_XOR2 =
(Packet2ul)vec_sld((Packet4ui)p2l_ZERO, (Packet4ui)p2d_ZERO_, 8); //{ 0x8000000000000000, 0x0000000000000000 };
struct Packet1cd {
EIGEN_STRONG_INLINE Packet1cd() {}
EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {}
Packet2d v;
};
struct Packet2cf {
EIGEN_STRONG_INLINE Packet2cf() {}
EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ < 12)
union {
Packet4f v;
Packet1cd cd[2];
};
#else
Packet4f v;
#endif
};
template <>
struct packet_traits<std::complex<float> > : default_packet_traits {
typedef Packet2cf type;
typedef Packet2cf half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasLog = 1,
HasExp = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasBlend = 1,
HasSetLinear = 0
};
};
template <>
struct packet_traits<std::complex<double> > : default_packet_traits {
typedef Packet1cd type;
typedef Packet1cd half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 1,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasLog = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
template <>
struct unpacket_traits<Packet2cf> {
typedef std::complex<float> type;
enum {
size = 2,
alignment = Aligned16,
vectorizable = true,
masked_load_available = false,
masked_store_available = false
};
typedef Packet2cf half;
typedef Packet4f as_real;
};
template <>
struct unpacket_traits<Packet1cd> {
typedef std::complex<double> type;
enum {
size = 1,
alignment = Aligned16,
vectorizable = true,
masked_load_available = false,
masked_store_available = false
};
typedef Packet1cd half;
typedef Packet2d as_real;
};
/* Forward declaration */
EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet2cf, 2>& kernel);
/* complex<double> first */
template <>
EIGEN_STRONG_INLINE Packet1cd pload<Packet1cd>(const std::complex<double>* from) {
EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from));
}
template <>
EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) {
EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from));
}
template <>
EIGEN_STRONG_INLINE void pstore<std::complex<double> >(std::complex<double>* to, const Packet1cd& from) {
EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v);
}
template <>
EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double>* to, const Packet1cd& from) {
EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v);
}
template <>
EIGEN_STRONG_INLINE Packet1cd
pset1<Packet1cd>(const std::complex<double>& from) { /* here we really have to use unaligned loads :( */
return ploadu<Packet1cd>(&from);
}
template <>
EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from,
Index stride EIGEN_UNUSED) {
return pload<Packet1cd>(from);
}
template <>
EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from,
Index stride EIGEN_UNUSED) {
pstore<std::complex<double> >(to, from);
}
template <>
EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
return Packet1cd(a.v + b.v);
}
template <>
EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
return Packet1cd(a.v - b.v);
}
template <>
EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) {
return Packet1cd(pnegate(Packet2d(a.v)));
}
template <>
EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) {
return Packet1cd((Packet2d)vec_xor((Packet2d)a.v, (Packet2d)p2ul_CONJ_XOR2));
}
template <>
EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
Packet2d a_re, a_im, v1, v2;
// Permute and multiply the real parts of a and b
a_re = vec_perm(a.v, a.v, p16uc_PSET64_HI);
// Get the imaginary parts of a
a_im = vec_perm(a.v, a.v, p16uc_PSET64_LO);
// multiply a_re * b
v1 = vec_madd(a_re, b.v, p2d_ZERO);
// multiply a_im * b and get the conjugate result
v2 = vec_madd(a_im, b.v, p2d_ZERO);
v2 = (Packet2d)vec_sld((Packet4ui)v2, (Packet4ui)v2, 8);
v2 = (Packet2d)vec_xor((Packet2d)v2, (Packet2d)p2ul_CONJ_XOR1);
return Packet1cd(v1 + v2);
}
template <>
EIGEN_STRONG_INLINE Packet1cd pand<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
return Packet1cd(vec_and(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet1cd por<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
return Packet1cd(vec_or(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet1cd pxor<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
return Packet1cd(vec_xor(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
return Packet1cd(vec_and(a.v, vec_nor(b.v, b.v)));
}
template <>
EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) {
return pset1<Packet1cd>(*from);
}
template <>
EIGEN_STRONG_INLINE Packet1cd pcmp_eq(const Packet1cd& a, const Packet1cd& b) {
Packet2d eq = vec_cmpeq(a.v, b.v);
Packet2d tmp = {eq[1], eq[0]};
return (Packet1cd)pand<Packet2d>(eq, tmp);
}
template <>
EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double>* addr) {
EIGEN_ZVECTOR_PREFETCH(addr);
}
template <>
EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a) {
EIGEN_ALIGN16 std::complex<double> res;
pstore<std::complex<double> >(&res, a);
return res;
}
template <>
EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) {
return a;
}
template <>
EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a) {
return pfirst(a);
}
template <>
EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a) {
return pfirst(a);
}
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd, Packet2d)
template <>
EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
return pdiv_complex(a, b);
}
template <>
EIGEN_STRONG_INLINE Packet1cd plog<Packet1cd>(const Packet1cd& a, const Packet1cd& b) {
return plog_complex(a, b);
}
EIGEN_STRONG_INLINE Packet1cd pcplxflip /*<Packet1cd>*/ (const Packet1cd& x) {
return Packet1cd(preverse(Packet2d(x.v)));
}
EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd, 2>& kernel) {
Packet2d tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI);
kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO);
kernel.packet[0].v = tmp;
}
/* complex<float> follows */
template <>
EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) {
EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from));
}
template <>
EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) {
EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from));
}
template <>
EIGEN_STRONG_INLINE void pstore<std::complex<float> >(std::complex<float>* to, const Packet2cf& from) {
EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v);
}
template <>
EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float>* to, const Packet2cf& from) {
EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v);
}
template <>
EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a) {
EIGEN_ALIGN16 std::complex<float> res[2];
pstore<std::complex<float> >(res, a);
return res[0];
}
#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ < 12)
template <>
EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from) {
Packet2cf res;
res.cd[0] = Packet1cd(vec_ld2f((const float*)&from));
res.cd[1] = res.cd[0];
return res;
}
#else
template <>
EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from) {
Packet2cf res;
if ((std::ptrdiff_t(&from) % 16) == 0)
res.v = pload<Packet4f>((const float*)&from);
else
res.v = ploadu<Packet4f>((const float*)&from);
res.v = vec_perm(res.v, res.v, p16uc_PSET64_HI);
return res;
}
#endif
template <>
EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from,
Index stride) {
EIGEN_ALIGN16 std::complex<float> af[2];
af[0] = from[0 * stride];
af[1] = from[1 * stride];
return pload<Packet2cf>(af);
}
template <>
EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from,
Index stride) {
EIGEN_ALIGN16 std::complex<float> af[2];
pstore<std::complex<float> >((std::complex<float>*)af, from);
to[0 * stride] = af[0];
to[1 * stride] = af[1];
}
template <>
EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
return Packet2cf(padd<Packet4f>(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
return Packet2cf(psub<Packet4f>(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) {
return Packet2cf(pnegate(Packet4f(a.v)));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pand<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
return Packet2cf(pand<Packet4f>(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf por<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
return Packet2cf(por<Packet4f>(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pxor<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
return Packet2cf(pxor<Packet4f>(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
return Packet2cf(pandnot<Packet4f>(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) {
return pset1<Packet2cf>(*from);
}
template <>
EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float>* addr) {
EIGEN_ZVECTOR_PREFETCH(addr);
}
#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ < 12)
template <>
EIGEN_STRONG_INLINE Packet2cf pcmp_eq(const Packet2cf& a, const Packet2cf& b) {
Packet4f eq = pcmp_eq<Packet4f>(a.v, b.v);
Packet2cf res;
Packet2d tmp1 = {eq.v4f[0][1], eq.v4f[0][0]};
Packet2d tmp2 = {eq.v4f[1][1], eq.v4f[1][0]};
res.v.v4f[0] = pand<Packet2d>(eq.v4f[0], tmp1);
res.v.v4f[1] = pand<Packet2d>(eq.v4f[1], tmp2);
return res;
}
template <>
EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) {
Packet2cf res;
res.v.v4f[0] = pconj(Packet1cd(reinterpret_cast<Packet2d>(a.v.v4f[0]))).v;
res.v.v4f[1] = pconj(Packet1cd(reinterpret_cast<Packet2d>(a.v.v4f[1]))).v;
return res;
}
template <>
EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
Packet2cf res;
res.v.v4f[0] =
pmul(Packet1cd(reinterpret_cast<Packet2d>(a.v.v4f[0])), Packet1cd(reinterpret_cast<Packet2d>(b.v.v4f[0]))).v;
res.v.v4f[1] =
pmul(Packet1cd(reinterpret_cast<Packet2d>(a.v.v4f[1])), Packet1cd(reinterpret_cast<Packet2d>(b.v.v4f[1]))).v;
return res;
}
template <>
EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) {
Packet2cf res;
res.cd[0] = a.cd[1];
res.cd[1] = a.cd[0];
return res;
}
template <>
EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a) {
std::complex<float> res;
Packet1cd b = padd<Packet1cd>(a.cd[0], a.cd[1]);
vec_st2f(b.v, (float*)&res);
return res;
}
template <>
EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a) {
std::complex<float> res;
Packet1cd b = pmul<Packet1cd>(a.cd[0], a.cd[1]);
vec_st2f(b.v, (float*)&res);
return res;
}
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf, Packet4f)
template <>
EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
return pdiv_complex(a, b);
}
template <>
EIGEN_STRONG_INLINE Packet2cf plog<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
return plog_complex(a, b);
}
template <>
EIGEN_STRONG_INLINE Packet2cf pexp<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
return pexp_complex(a, b);
}
EIGEN_STRONG_INLINE Packet2cf pcplxflip /*<Packet2cf>*/ (const Packet2cf& x) {
Packet2cf res;
res.cd[0] = pcplxflip(x.cd[0]);
res.cd[1] = pcplxflip(x.cd[1]);
return res;
}
EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet2cf, 2>& kernel) {
Packet1cd tmp = kernel.packet[0].cd[1];
kernel.packet[0].cd[1] = kernel.packet[1].cd[0];
kernel.packet[1].cd[0] = tmp;
}
template <>
EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket,
const Packet2cf& elsePacket) {
Packet2cf result;
const Selector<4> ifPacket4 = {ifPacket.select[0], ifPacket.select[0], ifPacket.select[1], ifPacket.select[1]};
result.v = pblend<Packet4f>(ifPacket4, thenPacket.v, elsePacket.v);
return result;
}
#else
template <>
EIGEN_STRONG_INLINE Packet2cf pcmp_eq(const Packet2cf& a, const Packet2cf& b) {
Packet4f eq = vec_cmpeq(a.v, b.v);
Packet4f tmp = {eq[1], eq[0], eq[3], eq[2]};
return (Packet2cf)pand<Packet4f>(eq, tmp);
}
template <>
EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) {
return Packet2cf(pxor<Packet4f>(a.v, reinterpret_cast<Packet4f>(p4ui_CONJ_XOR)));
}
template <>
EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
Packet4f a_re, a_im, prod, prod_im;
// Permute and multiply the real parts of a and b
a_re = vec_perm(a.v, a.v, p16uc_PSET32_WODD);
// Get the imaginary parts of a
a_im = vec_perm(a.v, a.v, p16uc_PSET32_WEVEN);
// multiply a_im * b and get the conjugate result
prod_im = a_im * b.v;
prod_im = pxor<Packet4f>(prod_im, reinterpret_cast<Packet4f>(p4ui_CONJ_XOR));
// permute back to a proper order
prod_im = vec_perm(prod_im, prod_im, p16uc_COMPLEX32_REV);
// multiply a_re * b, add prod_im
prod = pmadd<Packet4f>(a_re, b.v, prod_im);
return Packet2cf(prod);
}
template <>
EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) {
Packet4f rev_a;
rev_a = vec_perm(a.v, a.v, p16uc_COMPLEX32_REV2);
return Packet2cf(rev_a);
}
template <>
EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a) {
Packet4f b;
b = vec_sld(a.v, a.v, 8);
b = padd<Packet4f>(a.v, b);
return pfirst<Packet2cf>(Packet2cf(b));
}
template <>
EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a) {
Packet4f b;
Packet2cf prod;
b = vec_sld(a.v, a.v, 8);
prod = pmul<Packet2cf>(a, Packet2cf(b));
return pfirst<Packet2cf>(prod);
}
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf, Packet4f)
template <>
EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b) {
return pdiv_complex(a, b);
}
template <>
EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& x) {
return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX32_REV));
}
EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet2cf, 2>& kernel) {
Packet4f tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI);
kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO);
kernel.packet[0].v = tmp;
}
template <>
EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket,
const Packet2cf& elsePacket) {
Packet2cf result;
result.v = reinterpret_cast<Packet4f>(
pblend<Packet2d>(ifPacket, reinterpret_cast<Packet2d>(thenPacket.v), reinterpret_cast<Packet2d>(elsePacket.v)));
return result;
}
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COMPLEX32_ZVECTOR_H