| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_BLASUTIL_H |
| #define EIGEN_BLASUTIL_H |
| |
| // This file contains many lightweight helper classes used to |
| // implement and control fast level 2 and level 3 BLAS-like routines. |
| |
| // IWYU pragma: private |
| #include "../InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| // forward declarations |
| template <typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, |
| bool ConjugateLhs = false, bool ConjugateRhs = false> |
| struct gebp_kernel; |
| |
| template <typename Scalar, typename Index, typename DataMapper, int nr, int StorageOrder, bool Conjugate = false, |
| bool PanelMode = false> |
| struct gemm_pack_rhs; |
| |
| template <typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, typename Packet, int StorageOrder, |
| bool Conjugate = false, bool PanelMode = false> |
| struct gemm_pack_lhs; |
| |
| template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, |
| int RhsStorageOrder, bool ConjugateRhs, int ResStorageOrder, int ResInnerStride> |
| struct general_matrix_matrix_product; |
| |
| template <typename Index, typename LhsScalar, typename LhsMapper, int LhsStorageOrder, bool ConjugateLhs, |
| typename RhsScalar, typename RhsMapper, bool ConjugateRhs, int Version = Specialized> |
| struct general_matrix_vector_product; |
| |
| template <typename From, typename To> |
| struct get_factor { |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE To run(const From& x) { return To(x); } |
| }; |
| |
| template <typename Scalar> |
| struct get_factor<Scalar, typename NumTraits<Scalar>::Real> { |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE typename NumTraits<Scalar>::Real run(const Scalar& x) { |
| return numext::real(x); |
| } |
| }; |
| |
| template <typename Scalar, typename Index> |
| class BlasVectorMapper { |
| public: |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasVectorMapper(Scalar* data) : m_data(data) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const { return m_data[i]; } |
| template <typename Packet, int AlignmentType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet load(Index i) const { |
| return ploadt<Packet, AlignmentType>(m_data + i); |
| } |
| |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC bool aligned(Index i) const { |
| return (std::uintptr_t(m_data + i) % sizeof(Packet)) == 0; |
| } |
| |
| protected: |
| Scalar* m_data; |
| }; |
| |
| template <typename Scalar, typename Index, int AlignmentType, int Incr = 1> |
| class BlasLinearMapper; |
| |
| template <typename Scalar, typename Index, int AlignmentType> |
| class BlasLinearMapper<Scalar, Index, AlignmentType> { |
| public: |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar* data, Index incr = 1) : m_data(data) { |
| EIGEN_ONLY_USED_FOR_DEBUG(incr); |
| eigen_assert(incr == 1); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(Index i) const { internal::prefetch(&operator()(i)); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const { return m_data[i]; } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i) const { |
| return ploadt<PacketType, AlignmentType>(m_data + i); |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacketPartial(Index i, Index n, Index offset = 0) const { |
| return ploadt_partial<PacketType, AlignmentType>(m_data + i, n, offset); |
| } |
| |
| template <typename PacketType, int AlignmentT> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType load(Index i) const { |
| return ploadt<PacketType, AlignmentT>(m_data + i); |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const PacketType& p) const { |
| pstoret<Scalar, PacketType, AlignmentType>(m_data + i, p); |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketPartial(Index i, const PacketType& p, Index n, |
| Index offset = 0) const { |
| pstoret_partial<Scalar, PacketType, AlignmentType>(m_data + i, p, n, offset); |
| } |
| |
| protected: |
| Scalar* m_data; |
| }; |
| |
| // Lightweight helper class to access matrix coefficients. |
| template <typename Scalar, typename Index, int StorageOrder, int AlignmentType = Unaligned, int Incr = 1> |
| class blas_data_mapper; |
| |
| // TMP to help PacketBlock store implementation. |
| // There's currently no known use case for PacketBlock load. |
| // The default implementation assumes ColMajor order. |
| // It always store each packet sequentially one `stride` apart. |
| template <typename Index, typename Scalar, typename Packet, int n, int idx, int StorageOrder> |
| struct PacketBlockManagement { |
| PacketBlockManagement<Index, Scalar, Packet, n, idx - 1, StorageOrder> pbm; |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar* to, const Index stride, Index i, Index j, |
| const PacketBlock<Packet, n>& block) const { |
| pbm.store(to, stride, i, j, block); |
| pstoreu<Scalar>(to + i + (j + idx) * stride, block.packet[idx]); |
| } |
| }; |
| |
| // PacketBlockManagement specialization to take care of RowMajor order without ifs. |
| template <typename Index, typename Scalar, typename Packet, int n, int idx> |
| struct PacketBlockManagement<Index, Scalar, Packet, n, idx, RowMajor> { |
| PacketBlockManagement<Index, Scalar, Packet, n, idx - 1, RowMajor> pbm; |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar* to, const Index stride, Index i, Index j, |
| const PacketBlock<Packet, n>& block) const { |
| pbm.store(to, stride, i, j, block); |
| pstoreu<Scalar>(to + j + (i + idx) * stride, block.packet[idx]); |
| } |
| }; |
| |
| template <typename Index, typename Scalar, typename Packet, int n, int StorageOrder> |
| struct PacketBlockManagement<Index, Scalar, Packet, n, -1, StorageOrder> { |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar* to, const Index stride, Index i, Index j, |
| const PacketBlock<Packet, n>& block) const { |
| EIGEN_UNUSED_VARIABLE(to); |
| EIGEN_UNUSED_VARIABLE(stride); |
| EIGEN_UNUSED_VARIABLE(i); |
| EIGEN_UNUSED_VARIABLE(j); |
| EIGEN_UNUSED_VARIABLE(block); |
| } |
| }; |
| |
| template <typename Index, typename Scalar, typename Packet, int n> |
| struct PacketBlockManagement<Index, Scalar, Packet, n, -1, RowMajor> { |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar* to, const Index stride, Index i, Index j, |
| const PacketBlock<Packet, n>& block) const { |
| EIGEN_UNUSED_VARIABLE(to); |
| EIGEN_UNUSED_VARIABLE(stride); |
| EIGEN_UNUSED_VARIABLE(i); |
| EIGEN_UNUSED_VARIABLE(j); |
| EIGEN_UNUSED_VARIABLE(block); |
| } |
| }; |
| |
| template <typename Scalar, typename Index, int StorageOrder, int AlignmentType> |
| class blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, 1> { |
| public: |
| typedef BlasLinearMapper<Scalar, Index, AlignmentType> LinearMapper; |
| typedef blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType> SubMapper; |
| typedef BlasVectorMapper<Scalar, Index> VectorMapper; |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride, Index incr = 1) |
| : m_data(data), m_stride(stride) { |
| EIGEN_ONLY_USED_FOR_DEBUG(incr); |
| eigen_assert(incr == 1); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubMapper getSubMapper(Index i, Index j) const { |
| return SubMapper(&operator()(i, j), m_stride); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { |
| return LinearMapper(&operator()(i, j)); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const { |
| return VectorMapper(&operator()(i, j)); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(Index i, Index j) const { internal::prefetch(&operator()(i, j)); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const { |
| return m_data[StorageOrder == RowMajor ? j + i * m_stride : i + j * m_stride]; |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i, Index j) const { |
| return ploadt<PacketType, AlignmentType>(&operator()(i, j)); |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacketPartial(Index i, Index j, Index n, |
| Index offset = 0) const { |
| return ploadt_partial<PacketType, AlignmentType>(&operator()(i, j), n, offset); |
| } |
| |
| template <typename PacketT, int AlignmentT> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i, Index j) const { |
| return ploadt<PacketT, AlignmentT>(&operator()(i, j)); |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, Index j, const PacketType& p) const { |
| pstoret<Scalar, PacketType, AlignmentType>(&operator()(i, j), p); |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketPartial(Index i, Index j, const PacketType& p, Index n, |
| Index offset = 0) const { |
| pstoret_partial<Scalar, PacketType, AlignmentType>(&operator()(i, j), p, n, offset); |
| } |
| |
| template <typename SubPacket> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket& p) const { |
| pscatter<Scalar, SubPacket>(&operator()(i, j), p, m_stride); |
| } |
| |
| template <typename SubPacket> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const { |
| return pgather<Scalar, SubPacket>(&operator()(i, j), m_stride); |
| } |
| |
| EIGEN_DEVICE_FUNC const Index stride() const { return m_stride; } |
| EIGEN_DEVICE_FUNC const Index incr() const { return 1; } |
| EIGEN_DEVICE_FUNC constexpr const Scalar* data() const { return m_data; } |
| |
| EIGEN_DEVICE_FUNC Index firstAligned(Index size) const { |
| if (std::uintptr_t(m_data) % sizeof(Scalar)) { |
| return -1; |
| } |
| return internal::first_default_aligned(m_data, size); |
| } |
| |
| template <typename SubPacket, int n> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketBlock(Index i, Index j, |
| const PacketBlock<SubPacket, n>& block) const { |
| PacketBlockManagement<Index, Scalar, SubPacket, n, n - 1, StorageOrder> pbm; |
| pbm.store(m_data, m_stride, i, j, block); |
| } |
| |
| protected: |
| Scalar* EIGEN_RESTRICT m_data; |
| const Index m_stride; |
| }; |
| |
| // Implementation of non-natural increment (i.e. inner-stride != 1) |
| // The exposed API is not complete yet compared to the Incr==1 case |
| // because some features makes less sense in this case. |
| template <typename Scalar, typename Index, int AlignmentType, int Incr> |
| class BlasLinearMapper { |
| public: |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar* data, Index incr) : m_data(data), m_incr(incr) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(int i) const { internal::prefetch(&operator()(i)); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const { return m_data[i * m_incr.value()]; } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i) const { |
| return pgather<Scalar, PacketType>(m_data + i * m_incr.value(), m_incr.value()); |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacketPartial(Index i, Index n, Index /*offset*/ = 0) const { |
| return pgather_partial<Scalar, PacketType>(m_data + i * m_incr.value(), m_incr.value(), n); |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const PacketType& p) const { |
| pscatter<Scalar, PacketType>(m_data + i * m_incr.value(), p, m_incr.value()); |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketPartial(Index i, const PacketType& p, Index n, |
| Index /*offset*/ = 0) const { |
| pscatter_partial<Scalar, PacketType>(m_data + i * m_incr.value(), p, m_incr.value(), n); |
| } |
| |
| protected: |
| Scalar* m_data; |
| const internal::variable_if_dynamic<Index, Incr> m_incr; |
| }; |
| |
| template <typename Scalar, typename Index, int StorageOrder, int AlignmentType, int Incr> |
| class blas_data_mapper { |
| public: |
| typedef BlasLinearMapper<Scalar, Index, AlignmentType, Incr> LinearMapper; |
| typedef blas_data_mapper SubMapper; |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride, Index incr) |
| : m_data(data), m_stride(stride), m_incr(incr) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubMapper getSubMapper(Index i, Index j) const { |
| return SubMapper(&operator()(i, j), m_stride, m_incr.value()); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { |
| return LinearMapper(&operator()(i, j), m_incr.value()); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(Index i, Index j) const { internal::prefetch(&operator()(i, j)); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const { |
| return m_data[StorageOrder == RowMajor ? j * m_incr.value() + i * m_stride : i * m_incr.value() + j * m_stride]; |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i, Index j) const { |
| return pgather<Scalar, PacketType>(&operator()(i, j), m_incr.value()); |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacketPartial(Index i, Index j, Index n, |
| Index /*offset*/ = 0) const { |
| return pgather_partial<Scalar, PacketType>(&operator()(i, j), m_incr.value(), n); |
| } |
| |
| template <typename PacketT, int AlignmentT> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i, Index j) const { |
| return pgather<Scalar, PacketT>(&operator()(i, j), m_incr.value()); |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, Index j, const PacketType& p) const { |
| pscatter<Scalar, PacketType>(&operator()(i, j), p, m_incr.value()); |
| } |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketPartial(Index i, Index j, const PacketType& p, Index n, |
| Index /*offset*/ = 0) const { |
| pscatter_partial<Scalar, PacketType>(&operator()(i, j), p, m_incr.value(), n); |
| } |
| |
| template <typename SubPacket> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket& p) const { |
| pscatter<Scalar, SubPacket>(&operator()(i, j), p, m_stride); |
| } |
| |
| template <typename SubPacket> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const { |
| return pgather<Scalar, SubPacket>(&operator()(i, j), m_stride); |
| } |
| |
| // storePacketBlock_helper defines a way to access values inside the PacketBlock, this is essentially required by the |
| // Complex types. |
| template <typename SubPacket, typename Scalar_, int n, int idx> |
| struct storePacketBlock_helper { |
| storePacketBlock_helper<SubPacket, Scalar_, n, idx - 1> spbh; |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store( |
| const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>* sup, Index i, Index j, |
| const PacketBlock<SubPacket, n>& block) const { |
| spbh.store(sup, i, j, block); |
| sup->template storePacket<SubPacket>(i, j + idx, block.packet[idx]); |
| } |
| }; |
| |
| template <typename SubPacket, int n, int idx> |
| struct storePacketBlock_helper<SubPacket, std::complex<float>, n, idx> { |
| storePacketBlock_helper<SubPacket, std::complex<float>, n, idx - 1> spbh; |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store( |
| const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>* sup, Index i, Index j, |
| const PacketBlock<SubPacket, n>& block) const { |
| spbh.store(sup, i, j, block); |
| sup->template storePacket<SubPacket>(i, j + idx, block.packet[idx]); |
| } |
| }; |
| |
| template <typename SubPacket, int n, int idx> |
| struct storePacketBlock_helper<SubPacket, std::complex<double>, n, idx> { |
| storePacketBlock_helper<SubPacket, std::complex<double>, n, idx - 1> spbh; |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store( |
| const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>* sup, Index i, Index j, |
| const PacketBlock<SubPacket, n>& block) const { |
| spbh.store(sup, i, j, block); |
| for (int l = 0; l < unpacket_traits<SubPacket>::size; l++) { |
| std::complex<double>* v = &sup->operator()(i + l, j + idx); |
| v->real(block.packet[idx].v[2 * l + 0]); |
| v->imag(block.packet[idx].v[2 * l + 1]); |
| } |
| } |
| }; |
| |
| template <typename SubPacket, typename Scalar_, int n> |
| struct storePacketBlock_helper<SubPacket, Scalar_, n, -1> { |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store( |
| const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>*, Index, Index, |
| const PacketBlock<SubPacket, n>&) const {} |
| }; |
| |
| template <typename SubPacket, int n> |
| struct storePacketBlock_helper<SubPacket, std::complex<float>, n, -1> { |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store( |
| const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>*, Index, Index, |
| const PacketBlock<SubPacket, n>&) const {} |
| }; |
| |
| template <typename SubPacket, int n> |
| struct storePacketBlock_helper<SubPacket, std::complex<double>, n, -1> { |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store( |
| const blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType, Incr>*, Index, Index, |
| const PacketBlock<SubPacket, n>&) const {} |
| }; |
| // This function stores a PacketBlock on m_data, this approach is really quite slow compare to Incr=1 and should be |
| // avoided when possible. |
| template <typename SubPacket, int n> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketBlock(Index i, Index j, |
| const PacketBlock<SubPacket, n>& block) const { |
| storePacketBlock_helper<SubPacket, Scalar, n, n - 1> spb; |
| spb.store(this, i, j, block); |
| } |
| |
| EIGEN_DEVICE_FUNC const Index stride() const { return m_stride; } |
| EIGEN_DEVICE_FUNC const Index incr() const { return m_incr.value(); } |
| EIGEN_DEVICE_FUNC constexpr Scalar* data() const { return m_data; } |
| |
| protected: |
| Scalar* EIGEN_RESTRICT m_data; |
| const Index m_stride; |
| const internal::variable_if_dynamic<Index, Incr> m_incr; |
| }; |
| |
| // lightweight helper class to access matrix coefficients (const version) |
| template <typename Scalar, typename Index, int StorageOrder> |
| class const_blas_data_mapper : public blas_data_mapper<const Scalar, Index, StorageOrder> { |
| public: |
| typedef const_blas_data_mapper<Scalar, Index, StorageOrder> SubMapper; |
| |
| EIGEN_ALWAYS_INLINE const_blas_data_mapper(const Scalar* data, Index stride) |
| : blas_data_mapper<const Scalar, Index, StorageOrder>(data, stride) {} |
| |
| EIGEN_ALWAYS_INLINE SubMapper getSubMapper(Index i, Index j) const { |
| return SubMapper(&(this->operator()(i, j)), this->m_stride); |
| } |
| }; |
| |
| /* Helper class to analyze the factors of a Product expression. |
| * In particular it allows to pop out operator-, scalar multiples, |
| * and conjugate */ |
| template <typename XprType> |
| struct blas_traits { |
| typedef typename traits<XprType>::Scalar Scalar; |
| typedef const XprType& ExtractType; |
| typedef XprType ExtractType_; |
| enum { |
| IsComplex = NumTraits<Scalar>::IsComplex, |
| IsTransposed = false, |
| NeedToConjugate = false, |
| HasUsableDirectAccess = |
| ((int(XprType::Flags) & DirectAccessBit) && |
| (bool(XprType::IsVectorAtCompileTime) || int(inner_stride_at_compile_time<XprType>::ret) == 1)) |
| ? 1 |
| : 0, |
| HasScalarFactor = false |
| }; |
| typedef std::conditional_t<bool(HasUsableDirectAccess), ExtractType, typename ExtractType_::PlainObject> |
| DirectLinearAccessType; |
| EIGEN_DEVICE_FUNC static inline EIGEN_DEVICE_FUNC ExtractType extract(const XprType& x) { return x; } |
| EIGEN_DEVICE_FUNC static inline EIGEN_DEVICE_FUNC const Scalar extractScalarFactor(const XprType&) { |
| return Scalar(1); |
| } |
| }; |
| |
| // pop conjugate |
| template <typename Scalar, typename NestedXpr> |
| struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> > : blas_traits<NestedXpr> { |
| typedef blas_traits<NestedXpr> Base; |
| typedef CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> XprType; |
| typedef typename Base::ExtractType ExtractType; |
| |
| enum { IsComplex = NumTraits<Scalar>::IsComplex, NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex }; |
| EIGEN_DEVICE_FUNC static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } |
| EIGEN_DEVICE_FUNC static inline Scalar extractScalarFactor(const XprType& x) { |
| return conj(Base::extractScalarFactor(x.nestedExpression())); |
| } |
| }; |
| |
| // pop scalar multiple |
| template <typename Scalar, typename NestedXpr, typename Plain> |
| struct blas_traits< |
| CwiseBinaryOp<scalar_product_op<Scalar>, const CwiseNullaryOp<scalar_constant_op<Scalar>, Plain>, NestedXpr> > |
| : blas_traits<NestedXpr> { |
| enum { HasScalarFactor = true }; |
| typedef blas_traits<NestedXpr> Base; |
| typedef CwiseBinaryOp<scalar_product_op<Scalar>, const CwiseNullaryOp<scalar_constant_op<Scalar>, Plain>, NestedXpr> |
| XprType; |
| typedef typename Base::ExtractType ExtractType; |
| EIGEN_DEVICE_FUNC static inline EIGEN_DEVICE_FUNC ExtractType extract(const XprType& x) { |
| return Base::extract(x.rhs()); |
| } |
| EIGEN_DEVICE_FUNC static inline EIGEN_DEVICE_FUNC Scalar extractScalarFactor(const XprType& x) { |
| return x.lhs().functor().m_other * Base::extractScalarFactor(x.rhs()); |
| } |
| }; |
| template <typename Scalar, typename NestedXpr, typename Plain> |
| struct blas_traits< |
| CwiseBinaryOp<scalar_product_op<Scalar>, NestedXpr, const CwiseNullaryOp<scalar_constant_op<Scalar>, Plain> > > |
| : blas_traits<NestedXpr> { |
| enum { HasScalarFactor = true }; |
| typedef blas_traits<NestedXpr> Base; |
| typedef CwiseBinaryOp<scalar_product_op<Scalar>, NestedXpr, const CwiseNullaryOp<scalar_constant_op<Scalar>, Plain> > |
| XprType; |
| typedef typename Base::ExtractType ExtractType; |
| EIGEN_DEVICE_FUNC static inline ExtractType extract(const XprType& x) { return Base::extract(x.lhs()); } |
| EIGEN_DEVICE_FUNC static inline Scalar extractScalarFactor(const XprType& x) { |
| return Base::extractScalarFactor(x.lhs()) * x.rhs().functor().m_other; |
| } |
| }; |
| template <typename Scalar, typename Plain1, typename Plain2> |
| struct blas_traits<CwiseBinaryOp<scalar_product_op<Scalar>, const CwiseNullaryOp<scalar_constant_op<Scalar>, Plain1>, |
| const CwiseNullaryOp<scalar_constant_op<Scalar>, Plain2> > > |
| : blas_traits<CwiseNullaryOp<scalar_constant_op<Scalar>, Plain1> > {}; |
| |
| // pop opposite |
| template <typename Scalar, typename NestedXpr> |
| struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> > : blas_traits<NestedXpr> { |
| enum { HasScalarFactor = true }; |
| typedef blas_traits<NestedXpr> Base; |
| typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> XprType; |
| typedef typename Base::ExtractType ExtractType; |
| EIGEN_DEVICE_FUNC static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } |
| EIGEN_DEVICE_FUNC static inline Scalar extractScalarFactor(const XprType& x) { |
| return -Base::extractScalarFactor(x.nestedExpression()); |
| } |
| }; |
| |
| // pop/push transpose |
| template <typename NestedXpr> |
| struct blas_traits<Transpose<NestedXpr> > : blas_traits<NestedXpr> { |
| typedef typename NestedXpr::Scalar Scalar; |
| typedef blas_traits<NestedXpr> Base; |
| typedef Transpose<NestedXpr> XprType; |
| typedef Transpose<const typename Base::ExtractType_> |
| ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS |
| typedef Transpose<const typename Base::ExtractType_> ExtractType_; |
| typedef std::conditional_t<bool(Base::HasUsableDirectAccess), ExtractType, typename ExtractType::PlainObject> |
| DirectLinearAccessType; |
| enum { IsTransposed = Base::IsTransposed ? 0 : 1 }; |
| EIGEN_DEVICE_FUNC static inline ExtractType extract(const XprType& x) { |
| return ExtractType(Base::extract(x.nestedExpression())); |
| } |
| EIGEN_DEVICE_FUNC static inline Scalar extractScalarFactor(const XprType& x) { |
| return Base::extractScalarFactor(x.nestedExpression()); |
| } |
| }; |
| |
| template <typename T> |
| struct blas_traits<const T> : blas_traits<T> {}; |
| |
| template <typename T, bool HasUsableDirectAccess = blas_traits<T>::HasUsableDirectAccess> |
| struct extract_data_selector { |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static const typename T::Scalar* run(const T& m) { |
| return blas_traits<T>::extract(m).data(); |
| } |
| }; |
| |
| template <typename T> |
| struct extract_data_selector<T, false> { |
| EIGEN_DEVICE_FUNC static typename T::Scalar* run(const T&) { return 0; } |
| }; |
| |
| template <typename T> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const typename T::Scalar* extract_data(const T& m) { |
| return extract_data_selector<T>::run(m); |
| } |
| |
| /** |
| * \c combine_scalar_factors extracts and multiplies factors from GEMM and GEMV products. |
| * There is a specialization for booleans |
| */ |
| template <typename ResScalar, typename Lhs, typename Rhs> |
| struct combine_scalar_factors_impl { |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static ResScalar run(const Lhs& lhs, const Rhs& rhs) { |
| return blas_traits<Lhs>::extractScalarFactor(lhs) * blas_traits<Rhs>::extractScalarFactor(rhs); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static ResScalar run(const ResScalar& alpha, const Lhs& lhs, const Rhs& rhs) { |
| return alpha * blas_traits<Lhs>::extractScalarFactor(lhs) * blas_traits<Rhs>::extractScalarFactor(rhs); |
| } |
| }; |
| template <typename Lhs, typename Rhs> |
| struct combine_scalar_factors_impl<bool, Lhs, Rhs> { |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static bool run(const Lhs& lhs, const Rhs& rhs) { |
| return blas_traits<Lhs>::extractScalarFactor(lhs) && blas_traits<Rhs>::extractScalarFactor(rhs); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static bool run(const bool& alpha, const Lhs& lhs, const Rhs& rhs) { |
| return alpha && blas_traits<Lhs>::extractScalarFactor(lhs) && blas_traits<Rhs>::extractScalarFactor(rhs); |
| } |
| }; |
| |
| template <typename ResScalar, typename Lhs, typename Rhs> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE ResScalar combine_scalar_factors(const ResScalar& alpha, const Lhs& lhs, |
| const Rhs& rhs) { |
| return combine_scalar_factors_impl<ResScalar, Lhs, Rhs>::run(alpha, lhs, rhs); |
| } |
| template <typename ResScalar, typename Lhs, typename Rhs> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE ResScalar combine_scalar_factors(const Lhs& lhs, const Rhs& rhs) { |
| return combine_scalar_factors_impl<ResScalar, Lhs, Rhs>::run(lhs, rhs); |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_BLASUTIL_H |