| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_META_H |
| #define EIGEN_META_H |
| |
| // IWYU pragma: private |
| #include "../InternalHeaderCheck.h" |
| |
| #if defined(EIGEN_GPU_COMPILE_PHASE) |
| |
| #include <cfloat> |
| |
| #if defined(EIGEN_CUDA_ARCH) |
| #include <math_constants.h> |
| #endif |
| |
| #if defined(EIGEN_HIP_DEVICE_COMPILE) |
| #include "Eigen/src/Core/arch/HIP/hcc/math_constants.h" |
| #endif |
| |
| #endif |
| |
| // Define portable (u)int{32,64} types |
| #include <cstdint> |
| |
| namespace Eigen { |
| namespace numext { |
| typedef std::uint8_t uint8_t; |
| typedef std::int8_t int8_t; |
| typedef std::uint16_t uint16_t; |
| typedef std::int16_t int16_t; |
| typedef std::uint32_t uint32_t; |
| typedef std::int32_t int32_t; |
| typedef std::uint64_t uint64_t; |
| typedef std::int64_t int64_t; |
| |
| template <size_t Size> |
| struct get_integer_by_size { |
| typedef void signed_type; |
| typedef void unsigned_type; |
| }; |
| template <> |
| struct get_integer_by_size<1> { |
| typedef int8_t signed_type; |
| typedef uint8_t unsigned_type; |
| }; |
| template <> |
| struct get_integer_by_size<2> { |
| typedef int16_t signed_type; |
| typedef uint16_t unsigned_type; |
| }; |
| template <> |
| struct get_integer_by_size<4> { |
| typedef int32_t signed_type; |
| typedef uint32_t unsigned_type; |
| }; |
| template <> |
| struct get_integer_by_size<8> { |
| typedef int64_t signed_type; |
| typedef uint64_t unsigned_type; |
| }; |
| } // namespace numext |
| } // namespace Eigen |
| |
| namespace Eigen { |
| |
| typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex; |
| |
| /** |
| * \brief The Index type as used for the API. |
| * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. |
| * \sa \blank \ref TopicPreprocessorDirectives, StorageIndex. |
| */ |
| |
| typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index; |
| |
| namespace internal { |
| |
| /** \internal |
| * \file Meta.h |
| * This file contains generic metaprogramming classes which are not specifically related to Eigen. |
| * \note In case you wonder, yes we're aware that Boost already provides all these features, |
| * we however don't want to add a dependency to Boost. |
| */ |
| |
| struct true_type { |
| enum { value = 1 }; |
| }; |
| struct false_type { |
| enum { value = 0 }; |
| }; |
| |
| template <bool Condition> |
| struct bool_constant; |
| |
| template <> |
| struct bool_constant<true> : true_type {}; |
| |
| template <> |
| struct bool_constant<false> : false_type {}; |
| |
| // Third-party libraries rely on these. |
| using std::conditional; |
| using std::remove_const; |
| using std::remove_pointer; |
| using std::remove_reference; |
| |
| template <typename T> |
| struct remove_all { |
| typedef T type; |
| }; |
| template <typename T> |
| struct remove_all<const T> { |
| typedef typename remove_all<T>::type type; |
| }; |
| template <typename T> |
| struct remove_all<T const&> { |
| typedef typename remove_all<T>::type type; |
| }; |
| template <typename T> |
| struct remove_all<T&> { |
| typedef typename remove_all<T>::type type; |
| }; |
| template <typename T> |
| struct remove_all<T const*> { |
| typedef typename remove_all<T>::type type; |
| }; |
| template <typename T> |
| struct remove_all<T*> { |
| typedef typename remove_all<T>::type type; |
| }; |
| |
| template <typename T> |
| using remove_all_t = typename remove_all<T>::type; |
| |
| template <typename T> |
| struct is_arithmetic { |
| enum { value = false }; |
| }; |
| template <> |
| struct is_arithmetic<float> { |
| enum { value = true }; |
| }; |
| template <> |
| struct is_arithmetic<double> { |
| enum { value = true }; |
| }; |
| // GPU devices treat `long double` as `double`. |
| #ifndef EIGEN_GPU_COMPILE_PHASE |
| template <> |
| struct is_arithmetic<long double> { |
| enum { value = true }; |
| }; |
| #endif |
| template <> |
| struct is_arithmetic<bool> { |
| enum { value = true }; |
| }; |
| template <> |
| struct is_arithmetic<char> { |
| enum { value = true }; |
| }; |
| template <> |
| struct is_arithmetic<signed char> { |
| enum { value = true }; |
| }; |
| template <> |
| struct is_arithmetic<unsigned char> { |
| enum { value = true }; |
| }; |
| template <> |
| struct is_arithmetic<signed short> { |
| enum { value = true }; |
| }; |
| template <> |
| struct is_arithmetic<unsigned short> { |
| enum { value = true }; |
| }; |
| template <> |
| struct is_arithmetic<signed int> { |
| enum { value = true }; |
| }; |
| template <> |
| struct is_arithmetic<unsigned int> { |
| enum { value = true }; |
| }; |
| template <> |
| struct is_arithmetic<signed long> { |
| enum { value = true }; |
| }; |
| template <> |
| struct is_arithmetic<unsigned long> { |
| enum { value = true }; |
| }; |
| |
| template <typename T, typename U> |
| struct is_same { |
| enum { value = 0 }; |
| }; |
| template <typename T> |
| struct is_same<T, T> { |
| enum { value = 1 }; |
| }; |
| |
| template <class T> |
| struct is_void : is_same<void, std::remove_const_t<T>> {}; |
| |
| /** \internal |
| * Implementation of std::void_t for SFINAE. |
| * |
| * Pre C++17: |
| * Custom implementation. |
| * |
| * Post C++17: Uses std::void_t |
| */ |
| #if EIGEN_COMP_CXXVER >= 17 |
| using std::void_t; |
| #else |
| template <typename...> |
| using void_t = void; |
| #endif |
| |
| template <> |
| struct is_arithmetic<signed long long> { |
| enum { value = true }; |
| }; |
| template <> |
| struct is_arithmetic<unsigned long long> { |
| enum { value = true }; |
| }; |
| using std::is_integral; |
| |
| using std::make_unsigned; |
| |
| template <typename T> |
| struct is_const { |
| enum { value = 0 }; |
| }; |
| template <typename T> |
| struct is_const<T const> { |
| enum { value = 1 }; |
| }; |
| |
| template <typename T> |
| struct add_const_on_value_type { |
| typedef const T type; |
| }; |
| template <typename T> |
| struct add_const_on_value_type<T&> { |
| typedef T const& type; |
| }; |
| template <typename T> |
| struct add_const_on_value_type<T*> { |
| typedef T const* type; |
| }; |
| template <typename T> |
| struct add_const_on_value_type<T* const> { |
| typedef T const* const type; |
| }; |
| template <typename T> |
| struct add_const_on_value_type<T const* const> { |
| typedef T const* const type; |
| }; |
| |
| template <typename T> |
| using add_const_on_value_type_t = typename add_const_on_value_type<T>::type; |
| |
| using std::is_convertible; |
| |
| /** \internal |
| * A base class do disable default copy ctor and copy assignment operator. |
| */ |
| class noncopyable { |
| EIGEN_DEVICE_FUNC noncopyable(const noncopyable&); |
| EIGEN_DEVICE_FUNC const noncopyable& operator=(const noncopyable&); |
| |
| protected: |
| EIGEN_DEVICE_FUNC noncopyable() {} |
| EIGEN_DEVICE_FUNC ~noncopyable() {} |
| }; |
| |
| /** \internal |
| * Provides access to the number of elements in the object of as a compile-time constant expression. |
| * It "returns" Eigen::Dynamic if the size cannot be resolved at compile-time (default). |
| * |
| * Similar to std::tuple_size, but more general. |
| * |
| * It currently supports: |
| * - any types T defining T::SizeAtCompileTime |
| * - plain C arrays as T[N] |
| * - std::array (c++11) |
| * - some internal types such as SingleRange and AllRange |
| * |
| * The second template parameter eases SFINAE-based specializations. |
| */ |
| template <typename T, typename EnableIf = void> |
| struct array_size { |
| static constexpr Index value = Dynamic; |
| }; |
| |
| template <typename T> |
| struct array_size<T, std::enable_if_t<((T::SizeAtCompileTime & 0) == 0)>> { |
| static constexpr Index value = T::SizeAtCompileTime; |
| }; |
| |
| template <typename T, int N> |
| struct array_size<const T (&)[N]> { |
| static constexpr Index value = N; |
| }; |
| template <typename T, int N> |
| struct array_size<T (&)[N]> { |
| static constexpr Index value = N; |
| }; |
| |
| template <typename T, std::size_t N> |
| struct array_size<const std::array<T, N>> { |
| static constexpr Index value = N; |
| }; |
| template <typename T, std::size_t N> |
| struct array_size<std::array<T, N>> { |
| static constexpr Index value = N; |
| }; |
| |
| /** \internal |
| * Analogue of the std::ssize free function. |
| * It returns the signed size of the container or view \a x of type \c T |
| * |
| * It currently supports: |
| * - any types T defining a member T::size() const |
| * - plain C arrays as T[N] |
| * |
| * For C++20, this function just forwards to `std::ssize`, or any ADL discoverable `ssize` function. |
| */ |
| #if EIGEN_COMP_CXXVER < 20 || EIGEN_GNUC_STRICT_LESS_THAN(10, 0, 0) |
| template <typename T> |
| EIGEN_CONSTEXPR auto index_list_size(const T& x) { |
| using R = std::common_type_t<std::ptrdiff_t, std::make_signed_t<decltype(x.size())>>; |
| return static_cast<R>(x.size()); |
| } |
| |
| template <typename T, std::ptrdiff_t N> |
| EIGEN_CONSTEXPR std::ptrdiff_t index_list_size(const T (&)[N]) { |
| return N; |
| } |
| #else |
| template <typename T> |
| EIGEN_CONSTEXPR auto index_list_size(T&& x) { |
| using std::ssize; |
| return ssize(std::forward<T>(x)); |
| } |
| #endif // EIGEN_COMP_CXXVER |
| |
| /** \internal |
| * Convenient struct to get the result type of a nullary, unary, binary, or |
| * ternary functor. |
| * |
| * Pre C++17: |
| * This uses std::result_of. However, note the `type` member removes |
| * const and converts references/pointers to their corresponding value type. |
| * |
| * Post C++17: Uses std::invoke_result |
| */ |
| #if EIGEN_HAS_STD_INVOKE_RESULT |
| template <typename T> |
| struct result_of; |
| |
| template <typename F, typename... ArgTypes> |
| struct result_of<F(ArgTypes...)> { |
| typedef typename std::invoke_result<F, ArgTypes...>::type type1; |
| typedef remove_all_t<type1> type; |
| }; |
| |
| template <typename F, typename... ArgTypes> |
| struct invoke_result { |
| typedef typename std::invoke_result<F, ArgTypes...>::type type1; |
| typedef remove_all_t<type1> type; |
| }; |
| #else |
| template <typename T> |
| struct result_of { |
| typedef typename std::result_of<T>::type type1; |
| typedef remove_all_t<type1> type; |
| }; |
| |
| template <typename F, typename... ArgTypes> |
| struct invoke_result { |
| typedef typename result_of<F(ArgTypes...)>::type type1; |
| typedef remove_all_t<type1> type; |
| }; |
| #endif |
| |
| // Reduces a sequence of bools to true if all are true, false otherwise. |
| template <bool... values> |
| using reduce_all = |
| std::is_same<std::integer_sequence<bool, values..., true>, std::integer_sequence<bool, true, values...>>; |
| |
| // Reduces a sequence of bools to true if any are true, false if all false. |
| template <bool... values> |
| using reduce_any = std::integral_constant<bool, !std::is_same<std::integer_sequence<bool, values..., false>, |
| std::integer_sequence<bool, false, values...>>::value>; |
| |
| struct meta_yes { |
| char a[1]; |
| }; |
| struct meta_no { |
| char a[2]; |
| }; |
| |
| // Check whether T::ReturnType does exist |
| template <typename T> |
| struct has_ReturnType { |
| template <typename C> |
| static meta_yes testFunctor(C const*, typename C::ReturnType const* = 0); |
| template <typename C> |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor<T>(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| template <typename T> |
| const T* return_ptr(); |
| |
| template <typename T, typename IndexType = Index> |
| struct has_nullary_operator { |
| template <typename C> |
| static meta_yes testFunctor(C const*, std::enable_if_t<(sizeof(return_ptr<C>()->operator()()) > 0)>* = 0); |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| template <typename T, typename IndexType = Index> |
| struct has_unary_operator { |
| template <typename C> |
| static meta_yes testFunctor(C const*, std::enable_if_t<(sizeof(return_ptr<C>()->operator()(IndexType(0))) > 0)>* = 0); |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| template <typename T, typename IndexType = Index> |
| struct has_binary_operator { |
| template <typename C> |
| static meta_yes testFunctor( |
| C const*, std::enable_if_t<(sizeof(return_ptr<C>()->operator()(IndexType(0), IndexType(0))) > 0)>* = 0); |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| /** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer. |
| * Usage example: \code meta_sqrt<1023>::ret \endcode |
| */ |
| template <int Y, int InfX = 0, int SupX = ((Y == 1) ? 1 : Y / 2), |
| bool Done = ((SupX - InfX) <= 1 || ((SupX * SupX <= Y) && ((SupX + 1) * (SupX + 1) > Y)))> |
| class meta_sqrt { |
| enum { |
| MidX = (InfX + SupX) / 2, |
| TakeInf = MidX * MidX > Y ? 1 : 0, |
| NewInf = int(TakeInf) ? InfX : int(MidX), |
| NewSup = int(TakeInf) ? int(MidX) : SupX |
| }; |
| |
| public: |
| enum { ret = meta_sqrt<Y, NewInf, NewSup>::ret }; |
| }; |
| |
| template <int Y, int InfX, int SupX> |
| class meta_sqrt<Y, InfX, SupX, true> { |
| public: |
| enum { ret = (SupX * SupX <= Y) ? SupX : InfX }; |
| }; |
| |
| /** \internal Computes the least common multiple of two positive integer A and B |
| * at compile-time. |
| */ |
| template <int A, int B, int K = 1, bool Done = ((A * K) % B) == 0, bool Big = (A >= B)> |
| struct meta_least_common_multiple { |
| enum { ret = meta_least_common_multiple<A, B, K + 1>::ret }; |
| }; |
| template <int A, int B, int K, bool Done> |
| struct meta_least_common_multiple<A, B, K, Done, false> { |
| enum { ret = meta_least_common_multiple<B, A, K>::ret }; |
| }; |
| template <int A, int B, int K> |
| struct meta_least_common_multiple<A, B, K, true, true> { |
| enum { ret = A * K }; |
| }; |
| |
| /** \internal determines whether the product of two numeric types is allowed and what the return type is */ |
| template <typename T, typename U> |
| struct scalar_product_traits { |
| enum { Defined = 0 }; |
| }; |
| |
| // FIXME quick workaround around current limitation of result_of |
| // template<typename Scalar, typename ArgType0, typename ArgType1> |
| // struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> { |
| // typedef typename scalar_product_traits<remove_all_t<ArgType0>, remove_all_t<ArgType1>>::ReturnType type; |
| // }; |
| |
| /** \internal Obtains a POD type suitable to use as storage for an object of a size |
| * of at most Len bytes, aligned as specified by \c Align. |
| */ |
| template <unsigned Len, unsigned Align> |
| struct aligned_storage { |
| struct type { |
| EIGEN_ALIGN_TO_BOUNDARY(Align) unsigned char data[Len]; |
| }; |
| }; |
| |
| } // end namespace internal |
| |
| template <typename T> |
| struct NumTraits; |
| |
| namespace numext { |
| |
| #if defined(EIGEN_GPU_COMPILE_PHASE) |
| template <typename T> |
| EIGEN_DEVICE_FUNC void swap(T& a, T& b) { |
| T tmp = b; |
| b = a; |
| a = tmp; |
| } |
| #else |
| template <typename T> |
| EIGEN_STRONG_INLINE void swap(T& a, T& b) { |
| std::swap(a, b); |
| } |
| #endif |
| |
| using std::numeric_limits; |
| |
| // Handle integer comparisons of different signedness. |
| template <typename X, typename Y, bool XIsInteger = NumTraits<X>::IsInteger, bool XIsSigned = NumTraits<X>::IsSigned, |
| bool YIsInteger = NumTraits<Y>::IsInteger, bool YIsSigned = NumTraits<Y>::IsSigned> |
| struct equal_strict_impl { |
| static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool run(const X& x, const Y& y) { return x == y; } |
| }; |
| template <typename X, typename Y> |
| struct equal_strict_impl<X, Y, true, false, true, true> { |
| // X is an unsigned integer |
| // Y is a signed integer |
| // if Y is non-negative, it may be represented exactly as its unsigned counterpart. |
| using UnsignedY = typename internal::make_unsigned<Y>::type; |
| static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool run(const X& x, const Y& y) { |
| return y < Y(0) ? false : (x == static_cast<UnsignedY>(y)); |
| } |
| }; |
| template <typename X, typename Y> |
| struct equal_strict_impl<X, Y, true, true, true, false> { |
| // X is a signed integer |
| // Y is an unsigned integer |
| static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool run(const X& x, const Y& y) { |
| return equal_strict_impl<Y, X>::run(y, x); |
| } |
| }; |
| |
| // The aim of the following functions is to bypass -Wfloat-equal warnings |
| // when we really want a strict equality comparison on floating points. |
| template <typename X, typename Y> |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool equal_strict(const X& x, const Y& y) { |
| return equal_strict_impl<X, Y>::run(x, y); |
| } |
| |
| #if !defined(EIGEN_GPU_COMPILE_PHASE) || (!defined(EIGEN_CUDA_ARCH) && defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) |
| template <> |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool equal_strict(const float& x, const float& y) { |
| return std::equal_to<float>()(x, y); |
| } |
| |
| template <> |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool equal_strict(const double& x, const double& y) { |
| return std::equal_to<double>()(x, y); |
| } |
| #endif |
| |
| /** |
| * \internal Performs an exact comparison of x to zero, e.g. to decide whether a term can be ignored. |
| * Use this to to bypass -Wfloat-equal warnings when exact zero is what needs to be tested. |
| */ |
| template <typename X> |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool is_exactly_zero(const X& x) { |
| return equal_strict(x, typename NumTraits<X>::Literal{0}); |
| } |
| |
| /** |
| * \internal Performs an exact comparison of x to one, e.g. to decide whether a factor needs to be multiplied. |
| * Use this to to bypass -Wfloat-equal warnings when exact one is what needs to be tested. |
| */ |
| template <typename X> |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool is_exactly_one(const X& x) { |
| return equal_strict(x, typename NumTraits<X>::Literal{1}); |
| } |
| |
| template <typename X, typename Y> |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool not_equal_strict(const X& x, const Y& y) { |
| return !equal_strict_impl<X, Y>::run(x, y); |
| } |
| |
| #if !defined(EIGEN_GPU_COMPILE_PHASE) || (!defined(EIGEN_CUDA_ARCH) && defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) |
| template <> |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool not_equal_strict(const float& x, const float& y) { |
| return std::not_equal_to<float>()(x, y); |
| } |
| |
| template <> |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool not_equal_strict(const double& x, const double& y) { |
| return std::not_equal_to<double>()(x, y); |
| } |
| #endif |
| |
| } // end namespace numext |
| |
| namespace internal { |
| |
| template <typename Scalar> |
| struct is_identically_zero_impl { |
| static inline bool run(const Scalar& s) { return numext::is_exactly_zero(s); } |
| }; |
| |
| template <typename Scalar> |
| EIGEN_STRONG_INLINE bool is_identically_zero(const Scalar& s) { |
| return is_identically_zero_impl<Scalar>::run(s); |
| } |
| |
| /// \internal Returns true if its argument is of integer or enum type. |
| /// FIXME this has the same purpose as `is_valid_index_type` in XprHelper.h |
| template <typename A> |
| constexpr bool is_int_or_enum_v = std::is_enum<A>::value || std::is_integral<A>::value; |
| |
| template <typename A, typename B> |
| inline constexpr void plain_enum_asserts(A, B) { |
| static_assert(is_int_or_enum_v<A>, "Argument a must be an integer or enum"); |
| static_assert(is_int_or_enum_v<B>, "Argument b must be an integer or enum"); |
| } |
| |
| /// \internal Gets the minimum of two values which may be integers or enums |
| template <typename A, typename B> |
| inline constexpr int plain_enum_min(A a, B b) { |
| plain_enum_asserts(a, b); |
| return ((int)a <= (int)b) ? (int)a : (int)b; |
| } |
| |
| /// \internal Gets the maximum of two values which may be integers or enums |
| template <typename A, typename B> |
| inline constexpr int plain_enum_max(A a, B b) { |
| plain_enum_asserts(a, b); |
| return ((int)a >= (int)b) ? (int)a : (int)b; |
| } |
| |
| /** |
| * \internal |
| * `min_size_prefer_dynamic` gives the min between compile-time sizes. 0 has absolute priority, followed by 1, |
| * followed by Dynamic, followed by other finite values. The reason for giving Dynamic the priority over |
| * finite values is that min(3, Dynamic) should be Dynamic, since that could be anything between 0 and 3. |
| */ |
| template <typename A, typename B> |
| inline constexpr int min_size_prefer_dynamic(A a, B b) { |
| plain_enum_asserts(a, b); |
| if ((int)a == 0 || (int)b == 0) return 0; |
| if ((int)a == 1 || (int)b == 1) return 1; |
| if ((int)a == Dynamic || (int)b == Dynamic) return Dynamic; |
| return plain_enum_min(a, b); |
| } |
| |
| /** |
| * \internal |
| * min_size_prefer_fixed is a variant of `min_size_prefer_dynamic` comparing MaxSizes. The difference is that finite |
| * values now have priority over Dynamic, so that min(3, Dynamic) gives 3. Indeed, whatever the actual value is (between |
| * 0 and 3), it is not more than 3. |
| */ |
| template <typename A, typename B> |
| inline constexpr int min_size_prefer_fixed(A a, B b) { |
| plain_enum_asserts(a, b); |
| if ((int)a == 0 || (int)b == 0) return 0; |
| if ((int)a == 1 || (int)b == 1) return 1; |
| if ((int)a == Dynamic && (int)b == Dynamic) return Dynamic; |
| if ((int)a == Dynamic) return (int)b; |
| if ((int)b == Dynamic) return (int)a; |
| return plain_enum_min(a, b); |
| } |
| |
| /// \internal see `min_size_prefer_fixed`. No need for a separate variant for MaxSizes here. |
| template <typename A, typename B> |
| inline constexpr int max_size_prefer_dynamic(A a, B b) { |
| plain_enum_asserts(a, b); |
| if ((int)a == Dynamic || (int)b == Dynamic) return Dynamic; |
| return plain_enum_max(a, b); |
| } |
| |
| template <typename A, typename B> |
| inline constexpr bool enum_eq_not_dynamic(A a, B b) { |
| plain_enum_asserts(a, b); |
| if ((int)a == Dynamic || (int)b == Dynamic) return false; |
| return (int)a == (int)b; |
| } |
| |
| template <typename A, typename B> |
| inline constexpr bool enum_lt_not_dynamic(A a, B b) { |
| plain_enum_asserts(a, b); |
| if ((int)a == Dynamic || (int)b == Dynamic) return false; |
| return (int)a < (int)b; |
| } |
| |
| template <typename A, typename B> |
| inline constexpr bool enum_le_not_dynamic(A a, B b) { |
| plain_enum_asserts(a, b); |
| if ((int)a == Dynamic || (int)b == Dynamic) return false; |
| return (int)a <= (int)b; |
| } |
| |
| template <typename A, typename B> |
| inline constexpr bool enum_gt_not_dynamic(A a, B b) { |
| plain_enum_asserts(a, b); |
| if ((int)a == Dynamic || (int)b == Dynamic) return false; |
| return (int)a > (int)b; |
| } |
| |
| template <typename A, typename B> |
| inline constexpr bool enum_ge_not_dynamic(A a, B b) { |
| plain_enum_asserts(a, b); |
| if ((int)a == Dynamic || (int)b == Dynamic) return false; |
| return (int)a >= (int)b; |
| } |
| |
| /// \internal Calculate logical XOR at compile time |
| inline constexpr bool logical_xor(bool a, bool b) { return a != b; } |
| |
| /// \internal Calculate logical IMPLIES at compile time |
| inline constexpr bool check_implication(bool a, bool b) { return !a || b; } |
| |
| /// \internal Provide fallback for std::is_constant_evaluated for pre-C++20. |
| #if EIGEN_COMP_CXXVER >= 20 |
| using std::is_constant_evaluated; |
| #else |
| constexpr bool is_constant_evaluated() { return false; } |
| #endif |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_META_H |