blob: 8f8a6963a983e49dbc2e913c0b271924b13db6b1 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMPRESSED_STORAGE_H
#define EIGEN_COMPRESSED_STORAGE_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
/** \internal
* Stores a sparse set of values as a list of values and a list of indices.
*
*/
template <typename Scalar_, typename StorageIndex_>
class CompressedStorage {
public:
typedef Scalar_ Scalar;
typedef StorageIndex_ StorageIndex;
protected:
typedef typename NumTraits<Scalar>::Real RealScalar;
public:
CompressedStorage() : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) {}
explicit CompressedStorage(Index size) : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) { resize(size); }
CompressedStorage(const CompressedStorage& other) : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) {
*this = other;
}
CompressedStorage& operator=(const CompressedStorage& other) {
resize(other.size());
if (other.size() > 0) {
internal::smart_copy(other.m_values, other.m_values + m_size, m_values);
internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices);
}
return *this;
}
void swap(CompressedStorage& other) {
std::swap(m_values, other.m_values);
std::swap(m_indices, other.m_indices);
std::swap(m_size, other.m_size);
std::swap(m_allocatedSize, other.m_allocatedSize);
}
~CompressedStorage() {
conditional_aligned_delete_auto<Scalar, true>(m_values, m_allocatedSize);
conditional_aligned_delete_auto<StorageIndex, true>(m_indices, m_allocatedSize);
}
void reserve(Index size) {
Index newAllocatedSize = m_size + size;
if (newAllocatedSize > m_allocatedSize) reallocate(newAllocatedSize);
}
void squeeze() {
if (m_allocatedSize > m_size) reallocate(m_size);
}
void resize(Index size, double reserveSizeFactor = 0) {
if (m_allocatedSize < size) {
// Avoid underflow on the std::min<Index> call by choosing the smaller index type.
using SmallerIndexType =
typename std::conditional<static_cast<size_t>((std::numeric_limits<Index>::max)()) <
static_cast<size_t>((std::numeric_limits<StorageIndex>::max)()),
Index, StorageIndex>::type;
Index realloc_size =
(std::min<Index>)(NumTraits<SmallerIndexType>::highest(), size + Index(reserveSizeFactor * double(size)));
if (realloc_size < size) internal::throw_std_bad_alloc();
reallocate(realloc_size);
}
m_size = size;
}
void append(const Scalar& v, Index i) {
Index id = m_size;
resize(m_size + 1, 1);
m_values[id] = v;
m_indices[id] = internal::convert_index<StorageIndex>(i);
}
inline Index size() const { return m_size; }
inline Index allocatedSize() const { return m_allocatedSize; }
inline void clear() { m_size = 0; }
const Scalar* valuePtr() const { return m_values; }
Scalar* valuePtr() { return m_values; }
const StorageIndex* indexPtr() const { return m_indices; }
StorageIndex* indexPtr() { return m_indices; }
inline Scalar& value(Index i) {
eigen_internal_assert(m_values != 0);
return m_values[i];
}
inline const Scalar& value(Index i) const {
eigen_internal_assert(m_values != 0);
return m_values[i];
}
inline StorageIndex& index(Index i) {
eigen_internal_assert(m_indices != 0);
return m_indices[i];
}
inline const StorageIndex& index(Index i) const {
eigen_internal_assert(m_indices != 0);
return m_indices[i];
}
/** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */
inline Index searchLowerIndex(Index key) const { return searchLowerIndex(0, m_size, key); }
/** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */
inline Index searchLowerIndex(Index start, Index end, Index key) const {
return static_cast<Index>(std::distance(m_indices, std::lower_bound(m_indices + start, m_indices + end, key)));
}
/** \returns the stored value at index \a key
* If the value does not exist, then the value \a defaultValue is returned without any insertion. */
inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const {
if (m_size == 0)
return defaultValue;
else if (key == m_indices[m_size - 1])
return m_values[m_size - 1];
// ^^ optimization: let's first check if it is the last coefficient
// (very common in high level algorithms)
const Index id = searchLowerIndex(0, m_size - 1, key);
return ((id < m_size) && (m_indices[id] == key)) ? m_values[id] : defaultValue;
}
/** Like at(), but the search is performed in the range [start,end) */
inline Scalar atInRange(Index start, Index end, Index key, const Scalar& defaultValue = Scalar(0)) const {
if (start >= end)
return defaultValue;
else if (end > start && key == m_indices[end - 1])
return m_values[end - 1];
// ^^ optimization: let's first check if it is the last coefficient
// (very common in high level algorithms)
const Index id = searchLowerIndex(start, end - 1, key);
return ((id < end) && (m_indices[id] == key)) ? m_values[id] : defaultValue;
}
/** \returns a reference to the value at index \a key
* If the value does not exist, then the value \a defaultValue is inserted
* such that the keys are sorted. */
inline Scalar& atWithInsertion(Index key, const Scalar& defaultValue = Scalar(0)) {
Index id = searchLowerIndex(0, m_size, key);
if (id >= m_size || m_indices[id] != key) {
if (m_allocatedSize < m_size + 1) {
Index newAllocatedSize = 2 * (m_size + 1);
m_values = conditional_aligned_realloc_new_auto<Scalar, true>(m_values, newAllocatedSize, m_allocatedSize);
m_indices =
conditional_aligned_realloc_new_auto<StorageIndex, true>(m_indices, newAllocatedSize, m_allocatedSize);
m_allocatedSize = newAllocatedSize;
}
if (m_size > id) {
internal::smart_memmove(m_values + id, m_values + m_size, m_values + id + 1);
internal::smart_memmove(m_indices + id, m_indices + m_size, m_indices + id + 1);
}
m_size++;
m_indices[id] = internal::convert_index<StorageIndex>(key);
m_values[id] = defaultValue;
}
return m_values[id];
}
inline void moveChunk(Index from, Index to, Index chunkSize) {
eigen_internal_assert(chunkSize >= 0 && to + chunkSize <= m_size);
internal::smart_memmove(m_values + from, m_values + from + chunkSize, m_values + to);
internal::smart_memmove(m_indices + from, m_indices + from + chunkSize, m_indices + to);
}
protected:
inline void reallocate(Index size) {
#ifdef EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN
EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN
#endif
eigen_internal_assert(size != m_allocatedSize);
m_values = conditional_aligned_realloc_new_auto<Scalar, true>(m_values, size, m_allocatedSize);
m_indices = conditional_aligned_realloc_new_auto<StorageIndex, true>(m_indices, size, m_allocatedSize);
m_allocatedSize = size;
}
protected:
Scalar* m_values;
StorageIndex* m_indices;
Index m_size;
Index m_allocatedSize;
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COMPRESSED_STORAGE_H