| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_COMPRESSED_STORAGE_H |
| #define EIGEN_COMPRESSED_STORAGE_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** \internal |
| * Stores a sparse set of values as a list of values and a list of indices. |
| * |
| */ |
| template <typename Scalar_, typename StorageIndex_> |
| class CompressedStorage { |
| public: |
| typedef Scalar_ Scalar; |
| typedef StorageIndex_ StorageIndex; |
| |
| protected: |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| public: |
| CompressedStorage() : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) {} |
| |
| explicit CompressedStorage(Index size) : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) { resize(size); } |
| |
| CompressedStorage(const CompressedStorage& other) : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) { |
| *this = other; |
| } |
| |
| CompressedStorage& operator=(const CompressedStorage& other) { |
| resize(other.size()); |
| if (other.size() > 0) { |
| internal::smart_copy(other.m_values, other.m_values + m_size, m_values); |
| internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices); |
| } |
| return *this; |
| } |
| |
| void swap(CompressedStorage& other) { |
| std::swap(m_values, other.m_values); |
| std::swap(m_indices, other.m_indices); |
| std::swap(m_size, other.m_size); |
| std::swap(m_allocatedSize, other.m_allocatedSize); |
| } |
| |
| ~CompressedStorage() { |
| conditional_aligned_delete_auto<Scalar, true>(m_values, m_allocatedSize); |
| conditional_aligned_delete_auto<StorageIndex, true>(m_indices, m_allocatedSize); |
| } |
| |
| void reserve(Index size) { |
| Index newAllocatedSize = m_size + size; |
| if (newAllocatedSize > m_allocatedSize) reallocate(newAllocatedSize); |
| } |
| |
| void squeeze() { |
| if (m_allocatedSize > m_size) reallocate(m_size); |
| } |
| |
| void resize(Index size, double reserveSizeFactor = 0) { |
| if (m_allocatedSize < size) { |
| // Avoid underflow on the std::min<Index> call by choosing the smaller index type. |
| using SmallerIndexType = |
| typename std::conditional<static_cast<size_t>((std::numeric_limits<Index>::max)()) < |
| static_cast<size_t>((std::numeric_limits<StorageIndex>::max)()), |
| Index, StorageIndex>::type; |
| Index realloc_size = |
| (std::min<Index>)(NumTraits<SmallerIndexType>::highest(), size + Index(reserveSizeFactor * double(size))); |
| if (realloc_size < size) internal::throw_std_bad_alloc(); |
| reallocate(realloc_size); |
| } |
| m_size = size; |
| } |
| |
| void append(const Scalar& v, Index i) { |
| Index id = m_size; |
| resize(m_size + 1, 1); |
| m_values[id] = v; |
| m_indices[id] = internal::convert_index<StorageIndex>(i); |
| } |
| |
| inline Index size() const { return m_size; } |
| inline Index allocatedSize() const { return m_allocatedSize; } |
| inline void clear() { m_size = 0; } |
| |
| const Scalar* valuePtr() const { return m_values; } |
| Scalar* valuePtr() { return m_values; } |
| const StorageIndex* indexPtr() const { return m_indices; } |
| StorageIndex* indexPtr() { return m_indices; } |
| |
| inline Scalar& value(Index i) { |
| eigen_internal_assert(m_values != 0); |
| return m_values[i]; |
| } |
| inline const Scalar& value(Index i) const { |
| eigen_internal_assert(m_values != 0); |
| return m_values[i]; |
| } |
| |
| inline StorageIndex& index(Index i) { |
| eigen_internal_assert(m_indices != 0); |
| return m_indices[i]; |
| } |
| inline const StorageIndex& index(Index i) const { |
| eigen_internal_assert(m_indices != 0); |
| return m_indices[i]; |
| } |
| |
| /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */ |
| inline Index searchLowerIndex(Index key) const { return searchLowerIndex(0, m_size, key); } |
| |
| /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */ |
| inline Index searchLowerIndex(Index start, Index end, Index key) const { |
| return static_cast<Index>(std::distance(m_indices, std::lower_bound(m_indices + start, m_indices + end, key))); |
| } |
| |
| /** \returns the stored value at index \a key |
| * If the value does not exist, then the value \a defaultValue is returned without any insertion. */ |
| inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const { |
| if (m_size == 0) |
| return defaultValue; |
| else if (key == m_indices[m_size - 1]) |
| return m_values[m_size - 1]; |
| // ^^ optimization: let's first check if it is the last coefficient |
| // (very common in high level algorithms) |
| const Index id = searchLowerIndex(0, m_size - 1, key); |
| return ((id < m_size) && (m_indices[id] == key)) ? m_values[id] : defaultValue; |
| } |
| |
| /** Like at(), but the search is performed in the range [start,end) */ |
| inline Scalar atInRange(Index start, Index end, Index key, const Scalar& defaultValue = Scalar(0)) const { |
| if (start >= end) |
| return defaultValue; |
| else if (end > start && key == m_indices[end - 1]) |
| return m_values[end - 1]; |
| // ^^ optimization: let's first check if it is the last coefficient |
| // (very common in high level algorithms) |
| const Index id = searchLowerIndex(start, end - 1, key); |
| return ((id < end) && (m_indices[id] == key)) ? m_values[id] : defaultValue; |
| } |
| |
| /** \returns a reference to the value at index \a key |
| * If the value does not exist, then the value \a defaultValue is inserted |
| * such that the keys are sorted. */ |
| inline Scalar& atWithInsertion(Index key, const Scalar& defaultValue = Scalar(0)) { |
| Index id = searchLowerIndex(0, m_size, key); |
| if (id >= m_size || m_indices[id] != key) { |
| if (m_allocatedSize < m_size + 1) { |
| Index newAllocatedSize = 2 * (m_size + 1); |
| m_values = conditional_aligned_realloc_new_auto<Scalar, true>(m_values, newAllocatedSize, m_allocatedSize); |
| m_indices = |
| conditional_aligned_realloc_new_auto<StorageIndex, true>(m_indices, newAllocatedSize, m_allocatedSize); |
| m_allocatedSize = newAllocatedSize; |
| } |
| if (m_size > id) { |
| internal::smart_memmove(m_values + id, m_values + m_size, m_values + id + 1); |
| internal::smart_memmove(m_indices + id, m_indices + m_size, m_indices + id + 1); |
| } |
| m_size++; |
| m_indices[id] = internal::convert_index<StorageIndex>(key); |
| m_values[id] = defaultValue; |
| } |
| return m_values[id]; |
| } |
| |
| inline void moveChunk(Index from, Index to, Index chunkSize) { |
| eigen_internal_assert(chunkSize >= 0 && to + chunkSize <= m_size); |
| internal::smart_memmove(m_values + from, m_values + from + chunkSize, m_values + to); |
| internal::smart_memmove(m_indices + from, m_indices + from + chunkSize, m_indices + to); |
| } |
| |
| protected: |
| inline void reallocate(Index size) { |
| #ifdef EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN |
| EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN |
| #endif |
| eigen_internal_assert(size != m_allocatedSize); |
| m_values = conditional_aligned_realloc_new_auto<Scalar, true>(m_values, size, m_allocatedSize); |
| m_indices = conditional_aligned_realloc_new_auto<StorageIndex, true>(m_indices, size, m_allocatedSize); |
| m_allocatedSize = size; |
| } |
| |
| protected: |
| Scalar* m_values; |
| StorageIndex* m_indices; |
| Index m_size; |
| Index m_allocatedSize; |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_COMPRESSED_STORAGE_H |