blob: 1342f4e7bd7a6c483b9b308543d17ce5a3f49896 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_BLOCK_H
#define EIGEN_SPARSE_BLOCK_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
// Subset of columns or rows
template <typename XprType, int BlockRows, int BlockCols>
class BlockImpl<XprType, BlockRows, BlockCols, true, Sparse>
: public SparseMatrixBase<Block<XprType, BlockRows, BlockCols, true> > {
typedef internal::remove_all_t<typename XprType::Nested> MatrixTypeNested_;
typedef Block<XprType, BlockRows, BlockCols, true> BlockType;
public:
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
protected:
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
typedef SparseMatrixBase<BlockType> Base;
using Base::convert_index;
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
inline BlockImpl(XprType& xpr, Index i) : m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize) {}
inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr),
m_outerStart(convert_index(IsRowMajor ? startRow : startCol)),
m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols)) {}
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
Index nonZeros() const {
typedef internal::evaluator<XprType> EvaluatorType;
EvaluatorType matEval(m_matrix);
Index nnz = 0;
Index end = m_outerStart + m_outerSize.value();
for (Index j = m_outerStart; j < end; ++j)
for (typename EvaluatorType::InnerIterator it(matEval, j); it; ++it) ++nnz;
return nnz;
}
inline const Scalar coeff(Index row, Index col) const {
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
}
inline const Scalar coeff(Index index) const {
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
}
inline const XprType& nestedExpression() const { return m_matrix; }
inline XprType& nestedExpression() { return m_matrix; }
Index startRow() const { return IsRowMajor ? m_outerStart : 0; }
Index startCol() const { return IsRowMajor ? 0 : m_outerStart; }
Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
protected:
typename internal::ref_selector<XprType>::non_const_type m_matrix;
Index m_outerStart;
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
protected:
// Disable assignment with clear error message.
// Note that simply removing operator= yields compilation errors with ICC+MSVC
template <typename T>
BlockImpl& operator=(const T&) {
EIGEN_STATIC_ASSERT(sizeof(T) == 0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY);
return *this;
}
};
/***************************************************************************
* specialization for SparseMatrix
***************************************************************************/
namespace internal {
template <typename SparseMatrixType, int BlockRows, int BlockCols>
class sparse_matrix_block_impl : public SparseCompressedBase<Block<SparseMatrixType, BlockRows, BlockCols, true> > {
typedef internal::remove_all_t<typename SparseMatrixType::Nested> MatrixTypeNested_;
typedef Block<SparseMatrixType, BlockRows, BlockCols, true> BlockType;
typedef SparseCompressedBase<Block<SparseMatrixType, BlockRows, BlockCols, true> > Base;
using Base::convert_index;
public:
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
protected:
typedef typename Base::IndexVector IndexVector;
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
public:
inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index i)
: m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize) {}
inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows,
Index blockCols)
: m_matrix(xpr),
m_outerStart(convert_index(IsRowMajor ? startRow : startCol)),
m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols)) {}
template <typename OtherDerived>
inline BlockType& operator=(const SparseMatrixBase<OtherDerived>& other) {
typedef internal::remove_all_t<typename SparseMatrixType::Nested> NestedMatrixType_;
NestedMatrixType_& matrix = m_matrix;
// This assignment is slow if this vector set is not empty
// and/or it is not at the end of the nonzeros of the underlying matrix.
// 1 - eval to a temporary to avoid transposition and/or aliasing issues
Ref<const SparseMatrix<Scalar, IsRowMajor ? RowMajor : ColMajor, StorageIndex> > tmp(other.derived());
eigen_internal_assert(tmp.outerSize() == m_outerSize.value());
// 2 - let's check whether there is enough allocated memory
Index nnz = tmp.nonZeros();
Index start =
m_outerStart == 0 ? 0 : m_matrix.outerIndexPtr()[m_outerStart]; // starting position of the current block
Index end = m_matrix.outerIndexPtr()[m_outerStart + m_outerSize.value()]; // ending position of the current block
Index block_size = end - start; // available room in the current block
Index tail_size = m_matrix.outerIndexPtr()[m_matrix.outerSize()] - end;
Index free_size = m_matrix.isCompressed() ? Index(matrix.data().allocatedSize()) + block_size : block_size;
Index tmp_start = tmp.outerIndexPtr()[0];
bool update_trailing_pointers = false;
if (nnz > free_size) {
// realloc manually to reduce copies
typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz);
internal::smart_copy(m_matrix.valuePtr(), m_matrix.valuePtr() + start, newdata.valuePtr());
internal::smart_copy(m_matrix.innerIndexPtr(), m_matrix.innerIndexPtr() + start, newdata.indexPtr());
internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, newdata.valuePtr() + start);
internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz,
newdata.indexPtr() + start);
internal::smart_copy(matrix.valuePtr() + end, matrix.valuePtr() + end + tail_size,
newdata.valuePtr() + start + nnz);
internal::smart_copy(matrix.innerIndexPtr() + end, matrix.innerIndexPtr() + end + tail_size,
newdata.indexPtr() + start + nnz);
newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz);
matrix.data().swap(newdata);
update_trailing_pointers = true;
} else {
if (m_matrix.isCompressed() && nnz != block_size) {
// no need to realloc, simply copy the tail at its respective position and insert tmp
matrix.data().resize(start + nnz + tail_size);
internal::smart_memmove(matrix.valuePtr() + end, matrix.valuePtr() + end + tail_size,
matrix.valuePtr() + start + nnz);
internal::smart_memmove(matrix.innerIndexPtr() + end, matrix.innerIndexPtr() + end + tail_size,
matrix.innerIndexPtr() + start + nnz);
update_trailing_pointers = true;
}
internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, matrix.valuePtr() + start);
internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz,
matrix.innerIndexPtr() + start);
}
// update outer index pointers and innerNonZeros
if (IsVectorAtCompileTime) {
if (!m_matrix.isCompressed()) matrix.innerNonZeroPtr()[m_outerStart] = StorageIndex(nnz);
matrix.outerIndexPtr()[m_outerStart] = StorageIndex(start);
} else {
StorageIndex p = StorageIndex(start);
for (Index k = 0; k < m_outerSize.value(); ++k) {
StorageIndex nnz_k = internal::convert_index<StorageIndex>(tmp.innerVector(k).nonZeros());
if (!m_matrix.isCompressed()) matrix.innerNonZeroPtr()[m_outerStart + k] = nnz_k;
matrix.outerIndexPtr()[m_outerStart + k] = p;
p += nnz_k;
}
}
if (update_trailing_pointers) {
StorageIndex offset = internal::convert_index<StorageIndex>(nnz - block_size);
for (Index k = m_outerStart + m_outerSize.value(); k <= matrix.outerSize(); ++k) {
matrix.outerIndexPtr()[k] += offset;
}
}
return derived();
}
inline BlockType& operator=(const BlockType& other) { return operator= <BlockType>(other); }
inline const Scalar* valuePtr() const { return m_matrix.valuePtr(); }
inline Scalar* valuePtr() { return m_matrix.valuePtr(); }
inline const StorageIndex* innerIndexPtr() const { return m_matrix.innerIndexPtr(); }
inline StorageIndex* innerIndexPtr() { return m_matrix.innerIndexPtr(); }
inline const StorageIndex* outerIndexPtr() const { return m_matrix.outerIndexPtr() + m_outerStart; }
inline StorageIndex* outerIndexPtr() { return m_matrix.outerIndexPtr() + m_outerStart; }
inline const StorageIndex* innerNonZeroPtr() const {
return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr() + m_outerStart);
}
inline StorageIndex* innerNonZeroPtr() { return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr() + m_outerStart); }
bool isCompressed() const { return m_matrix.innerNonZeroPtr() == 0; }
inline Scalar& coeffRef(Index row, Index col) {
return m_matrix.coeffRef(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
}
inline const Scalar coeff(Index row, Index col) const {
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
}
inline const Scalar coeff(Index index) const {
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
}
const Scalar& lastCoeff() const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(sparse_matrix_block_impl);
eigen_assert(Base::nonZeros() > 0);
if (m_matrix.isCompressed())
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart + 1] - 1];
else
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart] + m_matrix.innerNonZeroPtr()[m_outerStart] - 1];
}
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
inline const SparseMatrixType& nestedExpression() const { return m_matrix; }
inline SparseMatrixType& nestedExpression() { return m_matrix; }
Index startRow() const { return IsRowMajor ? m_outerStart : 0; }
Index startCol() const { return IsRowMajor ? 0 : m_outerStart; }
Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
protected:
typename internal::ref_selector<SparseMatrixType>::non_const_type m_matrix;
Index m_outerStart;
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
};
} // namespace internal
template <typename Scalar_, int Options_, typename StorageIndex_, int BlockRows, int BlockCols>
class BlockImpl<SparseMatrix<Scalar_, Options_, StorageIndex_>, BlockRows, BlockCols, true, Sparse>
: public internal::sparse_matrix_block_impl<SparseMatrix<Scalar_, Options_, StorageIndex_>, BlockRows, BlockCols> {
public:
typedef StorageIndex_ StorageIndex;
typedef SparseMatrix<Scalar_, Options_, StorageIndex_> SparseMatrixType;
typedef internal::sparse_matrix_block_impl<SparseMatrixType, BlockRows, BlockCols> Base;
inline BlockImpl(SparseMatrixType& xpr, Index i) : Base(xpr, i) {}
inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Base(xpr, startRow, startCol, blockRows, blockCols) {}
using Base::operator=;
};
template <typename Scalar_, int Options_, typename StorageIndex_, int BlockRows, int BlockCols>
class BlockImpl<const SparseMatrix<Scalar_, Options_, StorageIndex_>, BlockRows, BlockCols, true, Sparse>
: public internal::sparse_matrix_block_impl<const SparseMatrix<Scalar_, Options_, StorageIndex_>, BlockRows,
BlockCols> {
public:
typedef StorageIndex_ StorageIndex;
typedef const SparseMatrix<Scalar_, Options_, StorageIndex_> SparseMatrixType;
typedef internal::sparse_matrix_block_impl<SparseMatrixType, BlockRows, BlockCols> Base;
inline BlockImpl(SparseMatrixType& xpr, Index i) : Base(xpr, i) {}
inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Base(xpr, startRow, startCol, blockRows, blockCols) {}
using Base::operator=;
private:
template <typename Derived>
BlockImpl(const SparseMatrixBase<Derived>& xpr, Index i);
template <typename Derived>
BlockImpl(const SparseMatrixBase<Derived>& xpr);
};
//----------
/** Generic implementation of sparse Block expression.
* Real-only.
*/
template <typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, Sparse>
: public SparseMatrixBase<Block<XprType, BlockRows, BlockCols, InnerPanel> >, internal::no_assignment_operator {
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
typedef SparseMatrixBase<BlockType> Base;
using Base::convert_index;
public:
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
typedef internal::remove_all_t<typename XprType::Nested> MatrixTypeNested_;
/** Column or Row constructor
*/
inline BlockImpl(XprType& xpr, Index i)
: m_matrix(xpr),
m_startRow((BlockRows == 1) && (BlockCols == XprType::ColsAtCompileTime) ? convert_index(i) : 0),
m_startCol((BlockRows == XprType::RowsAtCompileTime) && (BlockCols == 1) ? convert_index(i) : 0),
m_blockRows(BlockRows == 1 ? 1 : xpr.rows()),
m_blockCols(BlockCols == 1 ? 1 : xpr.cols()) {}
/** Dynamic-size constructor
*/
inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr),
m_startRow(convert_index(startRow)),
m_startCol(convert_index(startCol)),
m_blockRows(convert_index(blockRows)),
m_blockCols(convert_index(blockCols)) {}
inline Index rows() const { return m_blockRows.value(); }
inline Index cols() const { return m_blockCols.value(); }
inline Scalar& coeffRef(Index row, Index col) {
return m_matrix.coeffRef(row + m_startRow.value(), col + m_startCol.value());
}
inline const Scalar coeff(Index row, Index col) const {
return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value());
}
inline Scalar& coeffRef(Index index) {
return m_matrix.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const Scalar coeff(Index index) const {
return m_matrix.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const XprType& nestedExpression() const { return m_matrix; }
inline XprType& nestedExpression() { return m_matrix; }
Index startRow() const { return m_startRow.value(); }
Index startCol() const { return m_startCol.value(); }
Index blockRows() const { return m_blockRows.value(); }
Index blockCols() const { return m_blockCols.value(); }
protected:
// friend class internal::GenericSparseBlockInnerIteratorImpl<XprType,BlockRows,BlockCols,InnerPanel>;
friend struct internal::unary_evaluator<Block<XprType, BlockRows, BlockCols, InnerPanel>, internal::IteratorBased,
Scalar>;
Index nonZeros() const { return Dynamic; }
typename internal::ref_selector<XprType>::non_const_type m_matrix;
const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
protected:
// Disable assignment with clear error message.
// Note that simply removing operator= yields compilation errors with ICC+MSVC
template <typename T>
BlockImpl& operator=(const T&) {
EIGEN_STATIC_ASSERT(sizeof(T) == 0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY);
return *this;
}
};
namespace internal {
template <typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IteratorBased>
: public evaluator_base<Block<ArgType, BlockRows, BlockCols, InnerPanel> > {
class InnerVectorInnerIterator;
class OuterVectorInnerIterator;
public:
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
typedef typename XprType::StorageIndex StorageIndex;
typedef typename XprType::Scalar Scalar;
enum {
IsRowMajor = XprType::IsRowMajor,
OuterVector = (BlockCols == 1 && ArgType::IsRowMajor) || (BlockRows == 1 && !ArgType::IsRowMajor),
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
Flags = XprType::Flags
};
typedef std::conditional_t<OuterVector, OuterVectorInnerIterator, InnerVectorInnerIterator> InnerIterator;
explicit unary_evaluator(const XprType& op) : m_argImpl(op.nestedExpression()), m_block(op) {}
inline Index nonZerosEstimate() const {
const Index nnz = m_block.nonZeros();
if (nnz < 0) {
// Scale the non-zero estimate for the underlying expression linearly with block size.
// Return zero if the underlying block is empty.
const Index nested_sz = m_block.nestedExpression().size();
return nested_sz == 0 ? 0 : m_argImpl.nonZerosEstimate() * m_block.size() / nested_sz;
}
return nnz;
}
protected:
typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
evaluator<ArgType> m_argImpl;
const XprType& m_block;
};
template <typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
class unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IteratorBased>::InnerVectorInnerIterator
: public EvalIterator {
// NOTE MSVC fails to compile if we don't explicitly "import" IsRowMajor from unary_evaluator
// because the base class EvalIterator has a private IsRowMajor enum too. (bug #1786)
// NOTE We cannot call it IsRowMajor because it would shadow unary_evaluator::IsRowMajor
enum { XprIsRowMajor = unary_evaluator::IsRowMajor };
const XprType& m_block;
Index m_end;
public:
EIGEN_STRONG_INLINE InnerVectorInnerIterator(const unary_evaluator& aEval, Index outer)
: EvalIterator(aEval.m_argImpl, outer + (XprIsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol())),
m_block(aEval.m_block),
m_end(XprIsRowMajor ? aEval.m_block.startCol() + aEval.m_block.blockCols()
: aEval.m_block.startRow() + aEval.m_block.blockRows()) {
while ((EvalIterator::operator bool()) &&
(EvalIterator::index() < (XprIsRowMajor ? m_block.startCol() : m_block.startRow())))
EvalIterator::operator++();
}
inline StorageIndex index() const {
return EvalIterator::index() - convert_index<StorageIndex>(XprIsRowMajor ? m_block.startCol() : m_block.startRow());
}
inline Index outer() const {
return EvalIterator::outer() - (XprIsRowMajor ? m_block.startRow() : m_block.startCol());
}
inline Index row() const { return EvalIterator::row() - m_block.startRow(); }
inline Index col() const { return EvalIterator::col() - m_block.startCol(); }
inline operator bool() const { return EvalIterator::operator bool() && EvalIterator::index() < m_end; }
};
template <typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
class unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IteratorBased>::OuterVectorInnerIterator {
// NOTE see above
enum { XprIsRowMajor = unary_evaluator::IsRowMajor };
const unary_evaluator& m_eval;
Index m_outerPos;
const Index m_innerIndex;
Index m_end;
EvalIterator m_it;
public:
EIGEN_STRONG_INLINE OuterVectorInnerIterator(const unary_evaluator& aEval, Index outer)
: m_eval(aEval),
m_outerPos((XprIsRowMajor ? aEval.m_block.startCol() : aEval.m_block.startRow())),
m_innerIndex(XprIsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol()),
m_end(XprIsRowMajor ? aEval.m_block.startCol() + aEval.m_block.blockCols()
: aEval.m_block.startRow() + aEval.m_block.blockRows()),
m_it(m_eval.m_argImpl, m_outerPos) {
EIGEN_UNUSED_VARIABLE(outer);
eigen_assert(outer == 0);
while (m_it && m_it.index() < m_innerIndex) ++m_it;
if ((!m_it) || (m_it.index() != m_innerIndex)) ++(*this);
}
inline StorageIndex index() const {
return convert_index<StorageIndex>(m_outerPos -
(XprIsRowMajor ? m_eval.m_block.startCol() : m_eval.m_block.startRow()));
}
inline Index outer() const { return 0; }
inline Index row() const { return XprIsRowMajor ? 0 : index(); }
inline Index col() const { return XprIsRowMajor ? index() : 0; }
inline Scalar value() const { return m_it.value(); }
inline Scalar& valueRef() { return m_it.valueRef(); }
inline OuterVectorInnerIterator& operator++() {
// search next non-zero entry
while (++m_outerPos < m_end) {
// Restart iterator at the next inner-vector:
internal::destroy_at(&m_it);
internal::construct_at(&m_it, m_eval.m_argImpl, m_outerPos);
// search for the key m_innerIndex in the current outer-vector
while (m_it && m_it.index() < m_innerIndex) ++m_it;
if (m_it && m_it.index() == m_innerIndex) break;
}
return *this;
}
inline operator bool() const { return m_outerPos < m_end; }
};
template <typename Scalar_, int Options_, typename StorageIndex_, int BlockRows, int BlockCols>
struct unary_evaluator<Block<SparseMatrix<Scalar_, Options_, StorageIndex_>, BlockRows, BlockCols, true>, IteratorBased>
: evaluator<
SparseCompressedBase<Block<SparseMatrix<Scalar_, Options_, StorageIndex_>, BlockRows, BlockCols, true> > > {
typedef Block<SparseMatrix<Scalar_, Options_, StorageIndex_>, BlockRows, BlockCols, true> XprType;
typedef evaluator<SparseCompressedBase<XprType> > Base;
explicit unary_evaluator(const XprType& xpr) : Base(xpr) {}
};
template <typename Scalar_, int Options_, typename StorageIndex_, int BlockRows, int BlockCols>
struct unary_evaluator<Block<const SparseMatrix<Scalar_, Options_, StorageIndex_>, BlockRows, BlockCols, true>,
IteratorBased>
: evaluator<SparseCompressedBase<
Block<const SparseMatrix<Scalar_, Options_, StorageIndex_>, BlockRows, BlockCols, true> > > {
typedef Block<const SparseMatrix<Scalar_, Options_, StorageIndex_>, BlockRows, BlockCols, true> XprType;
typedef evaluator<SparseCompressedBase<XprType> > Base;
explicit unary_evaluator(const XprType& xpr) : Base(xpr) {}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSE_BLOCK_H