blob: f61693982ed7c63825a946512a16ee3979deb347 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010-2013 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIXSTORAGE_H
#define EIGEN_MATRIXSTORAGE_H
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(X) \
X; \
EIGEN_DENSE_STORAGE_CTOR_PLUGIN;
#else
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(X)
#endif
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
struct constructor_without_unaligned_array_assert {};
template <typename T, int Size>
EIGEN_DEVICE_FUNC constexpr void check_static_allocation_size() {
// if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit
#if EIGEN_STACK_ALLOCATION_LIMIT
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
#endif
}
/** \internal
* Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
* to 16 bytes boundary if the total size is a multiple of 16 bytes.
*/
template <typename T, int Size, int MatrixOrArrayOptions,
int Alignment = (MatrixOrArrayOptions & DontAlign) ? 0 : compute_default_alignment<T, Size>::value>
struct plain_array {
T array[Size];
EIGEN_DEVICE_FUNC constexpr plain_array() { check_static_allocation_size<T, Size>(); }
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
check_static_allocation_size<T, Size>();
}
};
#if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT)
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask)
#else
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
eigen_assert((internal::is_constant_evaluated() || (std::uintptr_t(array) & (sizemask)) == 0) && \
"this assertion is explained here: " \
"http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
" **** READ THIS WEB PAGE !!! ****");
#endif
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 8> {
EIGEN_ALIGN_TO_BOUNDARY(8) T array[Size];
EIGEN_DEVICE_FUNC constexpr plain_array() {
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(7);
check_static_allocation_size<T, Size>();
}
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
check_static_allocation_size<T, Size>();
}
};
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 16> {
EIGEN_ALIGN_TO_BOUNDARY(16) T array[Size];
EIGEN_DEVICE_FUNC constexpr plain_array() {
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(15);
check_static_allocation_size<T, Size>();
}
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
check_static_allocation_size<T, Size>();
}
};
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 32> {
EIGEN_ALIGN_TO_BOUNDARY(32) T array[Size];
EIGEN_DEVICE_FUNC constexpr plain_array() {
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(31);
check_static_allocation_size<T, Size>();
}
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
check_static_allocation_size<T, Size>();
}
};
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 64> {
EIGEN_ALIGN_TO_BOUNDARY(64) T array[Size];
EIGEN_DEVICE_FUNC constexpr plain_array() {
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(63);
check_static_allocation_size<T, Size>();
}
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
check_static_allocation_size<T, Size>();
}
};
template <typename T, int MatrixOrArrayOptions, int Alignment>
struct plain_array<T, 0, MatrixOrArrayOptions, Alignment> {
T array[1];
EIGEN_DEVICE_FUNC constexpr plain_array() {}
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {}
};
struct plain_array_helper {
template <typename T, int Size, int MatrixOrArrayOptions, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static void copy(
const plain_array<T, Size, MatrixOrArrayOptions, Alignment>& src, const Eigen::Index size,
plain_array<T, Size, MatrixOrArrayOptions, Alignment>& dst) {
smart_copy(src.array, src.array + size, dst.array);
}
template <typename T, int Size, int MatrixOrArrayOptions, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static void swap(plain_array<T, Size, MatrixOrArrayOptions, Alignment>& a,
const Eigen::Index a_size,
plain_array<T, Size, MatrixOrArrayOptions, Alignment>& b,
const Eigen::Index b_size) {
if (a_size < b_size) {
std::swap_ranges(b.array, b.array + a_size, a.array);
smart_move(b.array + a_size, b.array + b_size, a.array + a_size);
} else if (a_size > b_size) {
std::swap_ranges(a.array, a.array + b_size, b.array);
smart_move(a.array + b_size, a.array + a_size, b.array + b_size);
} else {
std::swap_ranges(a.array, a.array + a_size, b.array);
}
}
};
} // end namespace internal
/** \internal
*
* \class DenseStorage
* \ingroup Core_Module
*
* \brief Stores the data of a matrix
*
* This class stores the data of fixed-size, dynamic-size or mixed matrices
* in a way as compact as possible.
*
* \sa Matrix
*/
template <typename T, int Size, int Rows_, int Cols_, int Options_>
class DenseStorage;
// purely fixed-size matrix
template <typename T, int Size, int Rows_, int Cols_, int Options_>
class DenseStorage {
internal::plain_array<T, Size, Options_> m_data;
public:
constexpr EIGEN_DEVICE_FUNC DenseStorage(){EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(
Index size =
Size)} EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()) {}
#if defined(EIGEN_DENSE_STORAGE_CTOR_PLUGIN)
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage& other)
: m_data(other.m_data){EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size)}
#else
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage&) = default;
#endif
EIGEN_DEVICE_FUNC constexpr DenseStorage
&
operator=(const DenseStorage&) = default;
EIGEN_DEVICE_FUNC constexpr DenseStorage(DenseStorage&&) = default;
EIGEN_DEVICE_FUNC constexpr DenseStorage& operator=(DenseStorage&&) = default;
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index size, Index rows, Index cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size == rows * cols && rows == Rows_ && cols == Cols_);
EIGEN_UNUSED_VARIABLE(size);
EIGEN_UNUSED_VARIABLE(rows);
EIGEN_UNUSED_VARIABLE(cols);
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { numext::swap(m_data, other.m_data); }
EIGEN_DEVICE_FUNC static constexpr Index rows(void) EIGEN_NOEXCEPT { return Rows_; }
EIGEN_DEVICE_FUNC static constexpr Index cols(void) EIGEN_NOEXCEPT { return Cols_; }
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index, Index) {}
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index, Index) {}
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data.array; }
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data.array; }
};
// null matrix
template <typename T, int Rows_, int Cols_, int Options_>
class DenseStorage<T, 0, Rows_, Cols_, Options_> {
public:
static_assert(Rows_ * Cols_ == 0, "The fixed number of rows times columns must equal the storage size.");
EIGEN_DEVICE_FUNC constexpr DenseStorage() {}
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert) {}
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage&) {}
EIGEN_DEVICE_FUNC constexpr DenseStorage& operator=(const DenseStorage&) { return *this; }
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index, Index, Index) {}
EIGEN_DEVICE_FUNC constexpr void swap(DenseStorage&) {}
EIGEN_DEVICE_FUNC static constexpr Index rows(void) EIGEN_NOEXCEPT { return Rows_; }
EIGEN_DEVICE_FUNC static constexpr Index cols(void) EIGEN_NOEXCEPT { return Cols_; }
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index, Index) {}
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index, Index) {}
EIGEN_DEVICE_FUNC constexpr const T* data() const { return 0; }
EIGEN_DEVICE_FUNC constexpr T* data() { return 0; }
};
// more specializations for null matrices; these are necessary to resolve ambiguities
template <typename T, int Options_>
class DenseStorage<T, 0, Dynamic, Dynamic, Options_> {
Index m_rows;
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : DenseStorage() {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_rows(other.m_rows), m_cols(other.m_cols) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
m_rows = other.m_rows;
m_cols = other.m_cols;
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index cols) : m_rows(rows), m_cols(cols) {
eigen_assert(m_rows * m_cols == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
numext::swap(m_rows, other.m_rows);
numext::swap(m_cols, other.m_cols);
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_rows; }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_cols; }
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index cols) {
m_rows = rows;
m_cols = cols;
eigen_assert(m_rows * m_cols == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index cols) {
m_rows = rows;
m_cols = cols;
eigen_assert(m_rows * m_cols == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC const T* data() const { return nullptr; }
EIGEN_DEVICE_FUNC T* data() { return nullptr; }
};
template <typename T, int Rows_, int Options_>
class DenseStorage<T, 0, Rows_, Dynamic, Options_> {
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_cols(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : DenseStorage() {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_cols(other.m_cols) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
m_cols = other.m_cols;
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index, Index cols) : m_cols(cols) {
eigen_assert(Rows_ * m_cols == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { numext::swap(m_cols, other.m_cols); }
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index rows(void) EIGEN_NOEXCEPT { return Rows_; }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols(void) const EIGEN_NOEXCEPT { return m_cols; }
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index, Index cols) {
m_cols = cols;
eigen_assert(Rows_ * m_cols == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC void resize(Index, Index, Index cols) {
m_cols = cols;
eigen_assert(Rows_ * m_cols == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC const T* data() const { return nullptr; }
EIGEN_DEVICE_FUNC T* data() { return nullptr; }
};
template <typename T, int Cols_, int Options_>
class DenseStorage<T, 0, Dynamic, Cols_, Options_> {
Index m_rows;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : DenseStorage() {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_rows(other.m_rows) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
m_rows = other.m_rows;
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index) : m_rows(rows) {
eigen_assert(m_rows * Cols_ == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { numext::swap(m_rows, other.m_rows); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows(void) const EIGEN_NOEXCEPT { return m_rows; }
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index cols(void) EIGEN_NOEXCEPT { return Cols_; }
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index) {
m_rows = rows;
eigen_assert(m_rows * Cols_ == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index) {
m_rows = rows;
eigen_assert(m_rows * Cols_ == 0 && "The number of rows times columns must equal the storage size.");
}
EIGEN_DEVICE_FUNC const T* data() const { return nullptr; }
EIGEN_DEVICE_FUNC T* data() { return nullptr; }
};
// dynamic-size matrix with fixed-size storage
template <typename T, int Size, int Options_>
class DenseStorage<T, Size, Dynamic, Dynamic, Options_> {
internal::plain_array<T, Size, Options_> m_data;
Index m_rows;
Index m_cols;
public:
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_data(), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage& other)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(other.m_rows), m_cols(other.m_cols) {
internal::plain_array_helper::copy(other.m_data, m_rows * m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
if (this != &other) {
m_rows = other.m_rows;
m_cols = other.m_cols;
internal::plain_array_helper::copy(other.m_data, m_rows * m_cols, m_data);
}
return *this;
}
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index, Index rows, Index cols) : m_rows(rows), m_cols(cols) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
internal::plain_array_helper::swap(m_data, m_rows * m_cols, other.m_data, other.m_rows * other.m_cols);
numext::swap(m_rows, other.m_rows);
numext::swap(m_cols, other.m_cols);
}
EIGEN_DEVICE_FUNC constexpr Index rows() const { return m_rows; }
EIGEN_DEVICE_FUNC constexpr Index cols() const { return m_cols; }
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index rows, Index cols) {
m_rows = rows;
m_cols = cols;
}
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index rows, Index cols) {
m_rows = rows;
m_cols = cols;
}
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data.array; }
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed width
template <typename T, int Size, int Cols_, int Options_>
class DenseStorage<T, Size, Dynamic, Cols_, Options_> {
internal::plain_array<T, Size, Options_> m_data;
Index m_rows;
public:
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_rows(0) {}
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage& other)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(other.m_rows) {
internal::plain_array_helper::copy(other.m_data, m_rows * Cols_, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
if (this != &other) {
m_rows = other.m_rows;
internal::plain_array_helper::copy(other.m_data, m_rows * Cols_, m_data);
}
return *this;
}
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index, Index rows, Index) : m_rows(rows) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
internal::plain_array_helper::swap(m_data, m_rows * Cols_, other.m_data, other.m_rows * Cols_);
numext::swap(m_rows, other.m_rows);
}
EIGEN_DEVICE_FUNC constexpr Index rows(void) const EIGEN_NOEXCEPT { return m_rows; }
EIGEN_DEVICE_FUNC constexpr Index cols(void) const EIGEN_NOEXCEPT { return Cols_; }
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index rows, Index) { m_rows = rows; }
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index rows, Index) { m_rows = rows; }
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data.array; }
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed height
template <typename T, int Size, int Rows_, int Options_>
class DenseStorage<T, Size, Rows_, Dynamic, Options_> {
internal::plain_array<T, Size, Options_> m_data;
Index m_cols;
public:
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_cols(0) {}
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage& other)
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(other.m_cols) {
internal::plain_array_helper::copy(other.m_data, Rows_ * m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
if (this != &other) {
m_cols = other.m_cols;
internal::plain_array_helper::copy(other.m_data, Rows_ * m_cols, m_data);
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index, Index cols) : m_cols(cols) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
internal::plain_array_helper::swap(m_data, Rows_ * m_cols, other.m_data, Rows_ * other.m_cols);
numext::swap(m_cols, other.m_cols);
}
EIGEN_DEVICE_FUNC constexpr Index rows(void) const EIGEN_NOEXCEPT { return Rows_; }
EIGEN_DEVICE_FUNC constexpr Index cols(void) const EIGEN_NOEXCEPT { return m_cols; }
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index, Index cols) { m_cols = cols; }
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index, Index cols) { m_cols = cols; }
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data.array; }
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data.array; }
};
// purely dynamic matrix.
template <typename T, int Options_>
class DenseStorage<T, Dynamic, Dynamic, Dynamic, Options_> {
T* m_data;
Index m_rows;
Index m_cols;
public:
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(0), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size)),
m_rows(rows),
m_cols(cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size == rows * cols && rows >= 0 && cols >= 0);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(other.m_rows * other.m_cols)),
m_rows(other.m_rows),
m_cols(other.m_cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows * m_cols)
internal::smart_copy(other.m_data, other.m_data + other.m_rows * other.m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
if (this != &other) {
DenseStorage tmp(other);
this->swap(tmp);
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT : m_data(std::move(other.m_data)),
m_rows(std::move(other.m_rows)),
m_cols(std::move(other.m_cols)) {
other.m_data = nullptr;
other.m_rows = 0;
other.m_cols = 0;
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT {
numext::swap(m_data, other.m_data);
numext::swap(m_rows, other.m_rows);
numext::swap(m_cols, other.m_cols);
return *this;
}
EIGEN_DEVICE_FUNC ~DenseStorage() {
internal::conditional_aligned_delete_auto<T, (Options_ & DontAlign) == 0>(m_data, m_rows * m_cols);
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
numext::swap(m_data, other.m_data);
numext::swap(m_rows, other.m_rows);
numext::swap(m_cols, other.m_cols);
}
EIGEN_DEVICE_FUNC Index rows(void) const EIGEN_NOEXCEPT { return m_rows; }
EIGEN_DEVICE_FUNC Index cols(void) const EIGEN_NOEXCEPT { return m_cols; }
void conservativeResize(Index size, Index rows, Index cols) {
m_data =
internal::conditional_aligned_realloc_new_auto<T, (Options_ & DontAlign) == 0>(m_data, size, m_rows * m_cols);
m_rows = rows;
m_cols = cols;
}
EIGEN_DEVICE_FUNC void resize(Index size, Index rows, Index cols) {
if (size != m_rows * m_cols) {
internal::conditional_aligned_delete_auto<T, (Options_ & DontAlign) == 0>(m_data, m_rows * m_cols);
if (size > 0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative
m_data = internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
}
m_rows = rows;
m_cols = cols;
}
EIGEN_DEVICE_FUNC const T* data() const { return m_data; }
EIGEN_DEVICE_FUNC T* data() { return m_data; }
};
// matrix with dynamic width and fixed height (so that matrix has dynamic size).
template <typename T, int Rows_, int Options_>
class DenseStorage<T, Dynamic, Rows_, Dynamic, Options_> {
T* m_data;
Index m_cols;
public:
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_data(0), m_cols(0) {}
explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size)), m_cols(cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size == rows * cols && rows == Rows_ && cols >= 0);
EIGEN_UNUSED_VARIABLE(rows);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(Rows_ * other.m_cols)),
m_cols(other.m_cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_cols * Rows_)
internal::smart_copy(other.m_data, other.m_data + Rows_ * m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
if (this != &other) {
DenseStorage tmp(other);
this->swap(tmp);
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT : m_data(std::move(other.m_data)),
m_cols(std::move(other.m_cols)) {
other.m_data = nullptr;
other.m_cols = 0;
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT {
numext::swap(m_data, other.m_data);
numext::swap(m_cols, other.m_cols);
return *this;
}
EIGEN_DEVICE_FUNC ~DenseStorage() {
internal::conditional_aligned_delete_auto<T, (Options_ & DontAlign) == 0>(m_data, Rows_ * m_cols);
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
numext::swap(m_data, other.m_data);
numext::swap(m_cols, other.m_cols);
}
EIGEN_DEVICE_FUNC static constexpr Index rows(void) EIGEN_NOEXCEPT { return Rows_; }
EIGEN_DEVICE_FUNC Index cols(void) const EIGEN_NOEXCEPT { return m_cols; }
EIGEN_DEVICE_FUNC void conservativeResize(Index size, Index, Index cols) {
m_data =
internal::conditional_aligned_realloc_new_auto<T, (Options_ & DontAlign) == 0>(m_data, size, Rows_ * m_cols);
m_cols = cols;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index, Index cols) {
if (size != Rows_ * m_cols) {
internal::conditional_aligned_delete_auto<T, (Options_ & DontAlign) == 0>(m_data, Rows_ * m_cols);
if (size > 0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative
m_data = internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
}
m_cols = cols;
}
EIGEN_DEVICE_FUNC const T* data() const { return m_data; }
EIGEN_DEVICE_FUNC T* data() { return m_data; }
};
// matrix with dynamic height and fixed width (so that matrix has dynamic size).
template <typename T, int Cols_, int Options_>
class DenseStorage<T, Dynamic, Dynamic, Cols_, Options_> {
T* m_data;
Index m_rows;
public:
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_data(0), m_rows(0) {}
explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index size, Index rows, Index cols)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size)), m_rows(rows) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
eigen_internal_assert(size == rows * cols && rows >= 0 && cols == Cols_);
EIGEN_UNUSED_VARIABLE(cols);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(other.m_rows * Cols_)),
m_rows(other.m_rows) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows * Cols_)
internal::smart_copy(other.m_data, other.m_data + other.m_rows * Cols_, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
if (this != &other) {
DenseStorage tmp(other);
this->swap(tmp);
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT : m_data(std::move(other.m_data)),
m_rows(std::move(other.m_rows)) {
other.m_data = nullptr;
other.m_rows = 0;
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT {
numext::swap(m_data, other.m_data);
numext::swap(m_rows, other.m_rows);
return *this;
}
EIGEN_DEVICE_FUNC ~DenseStorage() {
internal::conditional_aligned_delete_auto<T, (Options_ & DontAlign) == 0>(m_data, Cols_ * m_rows);
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
numext::swap(m_data, other.m_data);
numext::swap(m_rows, other.m_rows);
}
EIGEN_DEVICE_FUNC Index rows(void) const EIGEN_NOEXCEPT { return m_rows; }
EIGEN_DEVICE_FUNC static constexpr Index cols(void) { return Cols_; }
void conservativeResize(Index size, Index rows, Index) {
m_data =
internal::conditional_aligned_realloc_new_auto<T, (Options_ & DontAlign) == 0>(m_data, size, m_rows * Cols_);
m_rows = rows;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index rows, Index) {
if (size != m_rows * Cols_) {
internal::conditional_aligned_delete_auto<T, (Options_ & DontAlign) == 0>(m_data, Cols_ * m_rows);
if (size > 0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative
m_data = internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
}
m_rows = rows;
}
EIGEN_DEVICE_FUNC const T* data() const { return m_data; }
EIGEN_DEVICE_FUNC T* data() { return m_data; }
};
} // end namespace Eigen
#endif // EIGEN_MATRIX_H