blob: 3ae8256f573d9cc2c4e1a33442e15b4f5c1bf7f4 [file] [log] [blame] [edit]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2023 Charlie Schlosser <cs.schlosser@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DEVICEWRAPPER_H
#define EIGEN_DEVICEWRAPPER_H
namespace Eigen {
template <typename Derived, typename Device>
struct DeviceWrapper {
using Base = EigenBase<internal::remove_all_t<Derived>>;
using Scalar = typename Derived::Scalar;
EIGEN_DEVICE_FUNC DeviceWrapper(Base& xpr, Device& device) : m_xpr(xpr.derived()), m_device(device) {}
EIGEN_DEVICE_FUNC DeviceWrapper(const Base& xpr, Device& device) : m_xpr(xpr.derived()), m_device(device) {}
template <typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived>& other) {
using AssignOp = internal::assign_op<Scalar, typename OtherDerived::Scalar>;
internal::call_assignment(*this, other.derived(), AssignOp());
return m_xpr;
}
template <typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator+=(const EigenBase<OtherDerived>& other) {
using AddAssignOp = internal::add_assign_op<Scalar, typename OtherDerived::Scalar>;
internal::call_assignment(*this, other.derived(), AddAssignOp());
return m_xpr;
}
template <typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator-=(const EigenBase<OtherDerived>& other) {
using SubAssignOp = internal::sub_assign_op<Scalar, typename OtherDerived::Scalar>;
internal::call_assignment(*this, other.derived(), SubAssignOp());
return m_xpr;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& derived() { return m_xpr; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Device& device() { return m_device; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NoAlias<DeviceWrapper, EigenBase> noalias() {
return NoAlias<DeviceWrapper, EigenBase>(*this);
}
Derived& m_xpr;
Device& m_device;
};
namespace internal {
// this is where we differentiate between lazy assignment and specialized kernels (e.g. matrix products)
template <typename DstXprType, typename SrcXprType, typename Functor, typename Device,
typename Kind = typename AssignmentKind<typename evaluator_traits<DstXprType>::Shape,
typename evaluator_traits<SrcXprType>::Shape>::Kind,
typename EnableIf = void>
struct AssignmentWithDevice;
// unless otherwise specified, use the default product implementation
template <typename DstXprType, typename Lhs, typename Rhs, int Options, typename Functor, typename Device,
typename Weak>
struct AssignmentWithDevice<DstXprType, Product<Lhs, Rhs, Options>, Functor, Device, Dense2Dense, Weak> {
using SrcXprType = Product<Lhs, Rhs, Options>;
using Base = Assignment<DstXprType, SrcXprType, Functor>;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType& dst, const SrcXprType& src, const Functor& func,
Device&) {
Base::run(dst, src, func);
};
};
// specialization for coeffcient-wise assignment
template <typename DstXprType, typename SrcXprType, typename Functor, typename Device, typename Weak>
struct AssignmentWithDevice<DstXprType, SrcXprType, Functor, Device, Dense2Dense, Weak> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType& dst, const SrcXprType& src, const Functor& func,
Device& device) {
#ifndef EIGEN_NO_DEBUG
internal::check_for_aliasing(dst, src);
#endif
call_dense_assignment_loop(dst, src, func, device);
}
};
// this allows us to use the default evaluation scheme if it is not specialized for the device
template <typename Kernel, typename Device, int Traversal = Kernel::AssignmentTraits::Traversal,
int Unrolling = Kernel::AssignmentTraits::Unrolling>
struct dense_assignment_loop_with_device {
using Base = dense_assignment_loop<Kernel, Traversal, Unrolling>;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel, Device&) { Base::run(kernel); }
};
// entry point for a generic expression with device
template <typename Dst, typename Src, typename Func, typename Device>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment_no_alias(DeviceWrapper<Dst, Device> dst,
const Src& src, const Func& func) {
enum {
NeedToTranspose = ((int(Dst::RowsAtCompileTime) == 1 && int(Src::ColsAtCompileTime) == 1) ||
(int(Dst::ColsAtCompileTime) == 1 && int(Src::RowsAtCompileTime) == 1)) &&
int(Dst::SizeAtCompileTime) != 1
};
using ActualDstTypeCleaned = std::conditional_t<NeedToTranspose, Transpose<Dst>, Dst>;
using ActualDstType = std::conditional_t<NeedToTranspose, Transpose<Dst>, Dst&>;
ActualDstType actualDst(dst.derived());
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ActualDstTypeCleaned, Src)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func, typename ActualDstTypeCleaned::Scalar, typename Src::Scalar);
// this provides a mechanism for specializing simple assignments, matrix products, etc
AssignmentWithDevice<ActualDstTypeCleaned, Src, Func, Device>::run(actualDst, src, func, dst.device());
}
// copy and pasted from AssignEvaluator except forward device to kernel
template <typename DstXprType, typename SrcXprType, typename Functor, typename Device>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_dense_assignment_loop(DstXprType& dst,
const SrcXprType& src,
const Functor& func,
Device& device) {
using DstEvaluatorType = evaluator<DstXprType>;
using SrcEvaluatorType = evaluator<SrcXprType>;
SrcEvaluatorType srcEvaluator(src);
// NOTE To properly handle A = (A*A.transpose())/s with A rectangular,
// we need to resize the destination after the source evaluator has been created.
resize_if_allowed(dst, src, func);
DstEvaluatorType dstEvaluator(dst);
using Kernel = generic_dense_assignment_kernel<DstEvaluatorType, SrcEvaluatorType, Functor>;
Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
dense_assignment_loop_with_device<Kernel, Device>::run(kernel, device);
}
} // namespace internal
template <typename Derived>
template <typename Device>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DeviceWrapper<Derived, Device> EigenBase<Derived>::device(Device& device) {
return DeviceWrapper<Derived, Device>(derived(), device);
}
template <typename Derived>
template <typename Device>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DeviceWrapper<const Derived, Device> EigenBase<Derived>::device(
Device& device) const {
return DeviceWrapper<const Derived, Device>(derived(), device);
}
} // namespace Eigen
#endif