blob: d78b30bc89f7ec1a0ed6e65840d4fe6331d7326f [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BIDIAGONALIZATION_H
#define EIGEN_BIDIAGONALIZATION_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
// UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
// At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
template <typename MatrixType_>
class UpperBidiagonalization {
public:
typedef MatrixType_ MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
ColsAtCompileTimeMinusOne = internal::decrement_size<ColsAtCompileTime>::ret
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0, RowMajor> BidiagonalType;
typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType;
typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType;
typedef HouseholderSequence<
const MatrixType, const internal::remove_all_t<typename Diagonal<const MatrixType, 0>::ConjugateReturnType> >
HouseholderUSequenceType;
typedef HouseholderSequence<const internal::remove_all_t<typename MatrixType::ConjugateReturnType>,
Diagonal<const MatrixType, 1>, OnTheRight>
HouseholderVSequenceType;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via Bidiagonalization::compute(const MatrixType&).
*/
UpperBidiagonalization() : m_householder(), m_bidiagonal(0, 0), m_isInitialized(false) {}
explicit UpperBidiagonalization(const MatrixType& matrix)
: m_householder(matrix.rows(), matrix.cols()),
m_bidiagonal(matrix.cols(), matrix.cols()),
m_isInitialized(false) {
compute(matrix);
}
UpperBidiagonalization(Index rows, Index cols)
: m_householder(rows, cols), m_bidiagonal(cols, cols), m_isInitialized(false) {}
UpperBidiagonalization& compute(const MatrixType& matrix);
UpperBidiagonalization& computeUnblocked(const MatrixType& matrix);
const MatrixType& householder() const { return m_householder; }
const BidiagonalType& bidiagonal() const { return m_bidiagonal; }
const HouseholderUSequenceType householderU() const {
eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate());
}
const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy
{
eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>())
.setLength(m_householder.cols() - 1)
.setShift(1);
}
protected:
MatrixType m_householder;
BidiagonalType m_bidiagonal;
bool m_isInitialized;
};
// Standard upper bidiagonalization without fancy optimizations
// This version should be faster for small matrix size
template <typename MatrixType>
void upperbidiagonalization_inplace_unblocked(MatrixType& mat, typename MatrixType::RealScalar* diagonal,
typename MatrixType::RealScalar* upper_diagonal,
typename MatrixType::Scalar* tempData = 0) {
typedef typename MatrixType::Scalar Scalar;
Index rows = mat.rows();
Index cols = mat.cols();
typedef Matrix<Scalar, Dynamic, 1, ColMajor, MatrixType::MaxRowsAtCompileTime, 1> TempType;
TempType tempVector;
if (tempData == 0) {
tempVector.resize(rows);
tempData = tempVector.data();
}
for (Index k = 0; /* breaks at k==cols-1 below */; ++k) {
Index remainingRows = rows - k;
Index remainingCols = cols - k - 1;
// construct left householder transform in-place in A
mat.col(k).tail(remainingRows).makeHouseholderInPlace(mat.coeffRef(k, k), diagonal[k]);
// apply householder transform to remaining part of A on the left
mat.bottomRightCorner(remainingRows, remainingCols)
.applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows - 1), mat.coeff(k, k), tempData);
if (k == cols - 1) break;
// construct right householder transform in-place in mat
mat.row(k).tail(remainingCols).makeHouseholderInPlace(mat.coeffRef(k, k + 1), upper_diagonal[k]);
// apply householder transform to remaining part of mat on the left
mat.bottomRightCorner(remainingRows - 1, remainingCols)
.applyHouseholderOnTheRight(mat.row(k).tail(remainingCols - 1).adjoint(), mat.coeff(k, k + 1), tempData);
}
}
/** \internal
* Helper routine for the block reduction to upper bidiagonal form.
*
* Let's partition the matrix A:
*
* | A00 A01 |
* A = | |
* | A10 A11 |
*
* This function reduces to bidiagonal form the left \c rows x \a blockSize vertical panel [A00/A10]
* and the \a blockSize x \c cols horizontal panel [A00 A01] of the matrix \a A. The bottom-right block A11
* is updated using matrix-matrix products:
* A22 -= V * Y^T - X * U^T
* where V and U contains the left and right Householder vectors. U and V are stored in A10, and A01
* respectively, and the update matrices X and Y are computed during the reduction.
*
*/
template <typename MatrixType>
void upperbidiagonalization_blocked_helper(
MatrixType& A, typename MatrixType::RealScalar* diagonal, typename MatrixType::RealScalar* upper_diagonal, Index bs,
Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, traits<MatrixType>::Flags & RowMajorBit> > X,
Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, traits<MatrixType>::Flags & RowMajorBit> > Y) {
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename NumTraits<RealScalar>::Literal Literal;
static constexpr int StorageOrder = (traits<MatrixType>::Flags & RowMajorBit) ? RowMajor : ColMajor;
typedef InnerStride<StorageOrder == ColMajor ? 1 : Dynamic> ColInnerStride;
typedef InnerStride<StorageOrder == ColMajor ? Dynamic : 1> RowInnerStride;
typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType;
typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType;
typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > SubMatType;
Index brows = A.rows();
Index bcols = A.cols();
Scalar tau_u, tau_u_prev(0), tau_v;
for (Index k = 0; k < bs; ++k) {
Index remainingRows = brows - k;
Index remainingCols = bcols - k - 1;
SubMatType X_k1(X.block(k, 0, remainingRows, k));
SubMatType V_k1(A.block(k, 0, remainingRows, k));
// 1 - update the k-th column of A
SubColumnType v_k = A.col(k).tail(remainingRows);
v_k -= V_k1 * Y.row(k).head(k).adjoint();
if (k) v_k -= X_k1 * A.col(k).head(k);
// 2 - construct left Householder transform in-place
v_k.makeHouseholderInPlace(tau_v, diagonal[k]);
if (k + 1 < bcols) {
SubMatType Y_k(Y.block(k + 1, 0, remainingCols, k + 1));
SubMatType U_k1(A.block(0, k + 1, k, remainingCols));
// this eases the application of Householder transforAions
// A(k,k) will store tau_v later
A(k, k) = Scalar(1);
// 3 - Compute y_k^T = tau_v * ( A^T*v_k - Y_k-1*V_k-1^T*v_k - U_k-1*X_k-1^T*v_k )
{
SubColumnType y_k(Y.col(k).tail(remainingCols));
// let's use the beginning of column k of Y as a temporary vector
SubColumnType tmp(Y.col(k).head(k));
y_k.noalias() = A.block(k, k + 1, remainingRows, remainingCols).adjoint() * v_k; // bottleneck
tmp.noalias() = V_k1.adjoint() * v_k;
y_k.noalias() -= Y_k.leftCols(k) * tmp;
tmp.noalias() = X_k1.adjoint() * v_k;
y_k.noalias() -= U_k1.adjoint() * tmp;
y_k *= numext::conj(tau_v);
}
// 4 - update k-th row of A (it will become u_k)
SubRowType u_k(A.row(k).tail(remainingCols));
u_k = u_k.conjugate();
{
u_k -= Y_k * A.row(k).head(k + 1).adjoint();
if (k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint();
}
// 5 - construct right Householder transform in-place
u_k.makeHouseholderInPlace(tau_u, upper_diagonal[k]);
// this eases the application of Householder transformations
// A(k,k+1) will store tau_u later
A(k, k + 1) = Scalar(1);
// 6 - Compute x_k = tau_u * ( A*u_k - X_k-1*U_k-1^T*u_k - V_k*Y_k^T*u_k )
{
SubColumnType x_k(X.col(k).tail(remainingRows - 1));
// let's use the beginning of column k of X as a temporary vectors
// note that tmp0 and tmp1 overlaps
SubColumnType tmp0(X.col(k).head(k)), tmp1(X.col(k).head(k + 1));
x_k.noalias() = A.block(k + 1, k + 1, remainingRows - 1, remainingCols) * u_k.transpose(); // bottleneck
tmp0.noalias() = U_k1 * u_k.transpose();
x_k.noalias() -= X_k1.bottomRows(remainingRows - 1) * tmp0;
tmp1.noalias() = Y_k.adjoint() * u_k.transpose();
x_k.noalias() -= A.block(k + 1, 0, remainingRows - 1, k + 1) * tmp1;
x_k *= numext::conj(tau_u);
tau_u = numext::conj(tau_u);
u_k = u_k.conjugate();
}
if (k > 0) A.coeffRef(k - 1, k) = tau_u_prev;
tau_u_prev = tau_u;
} else
A.coeffRef(k - 1, k) = tau_u_prev;
A.coeffRef(k, k) = tau_v;
}
if (bs < bcols) A.coeffRef(bs - 1, bs) = tau_u_prev;
// update A22
if (bcols > bs && brows > bs) {
SubMatType A11(A.bottomRightCorner(brows - bs, bcols - bs));
SubMatType A10(A.block(bs, 0, brows - bs, bs));
SubMatType A01(A.block(0, bs, bs, bcols - bs));
Scalar tmp = A01(bs - 1, 0);
A01(bs - 1, 0) = Literal(1);
A11.noalias() -= A10 * Y.topLeftCorner(bcols, bs).bottomRows(bcols - bs).adjoint();
A11.noalias() -= X.topLeftCorner(brows, bs).bottomRows(brows - bs) * A01;
A01(bs - 1, 0) = tmp;
}
}
/** \internal
*
* Implementation of a block-bidiagonal reduction.
* It is based on the following paper:
* The Design of a Parallel Dense Linear Algebra Software Library: Reduction to Hessenberg, Tridiagonal, and
* Bidiagonal Form. by Jaeyoung Choi, Jack J. Dongarra, David W. Walker. (1995) section 3.3
*/
template <typename MatrixType, typename BidiagType>
void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal, Index maxBlockSize = 32,
typename MatrixType::Scalar* /*tempData*/ = 0) {
typedef typename MatrixType::Scalar Scalar;
typedef Block<MatrixType, Dynamic, Dynamic> BlockType;
Index rows = A.rows();
Index cols = A.cols();
Index size = (std::min)(rows, cols);
// X and Y are work space
static constexpr int StorageOrder = (traits<MatrixType>::Flags & RowMajorBit) ? RowMajor : ColMajor;
Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic, StorageOrder, MatrixType::MaxRowsAtCompileTime> X(
rows, maxBlockSize);
Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic, StorageOrder, MatrixType::MaxColsAtCompileTime> Y(
cols, maxBlockSize);
Index blockSize = (std::min)(maxBlockSize, size);
Index k = 0;
for (k = 0; k < size; k += blockSize) {
Index bs = (std::min)(size - k, blockSize); // actual size of the block
Index brows = rows - k; // rows of the block
Index bcols = cols - k; // columns of the block
// partition the matrix A:
//
// | A00 A01 A02 |
// | |
// A = | A10 A11 A12 |
// | |
// | A20 A21 A22 |
//
// where A11 is a bs x bs diagonal block,
// and let:
// | A11 A12 |
// B = | |
// | A21 A22 |
BlockType B = A.block(k, k, brows, bcols);
// This stage performs the bidiagonalization of A11, A21, A12, and updating of A22.
// Finally, the algorithm continue on the updated A22.
//
// However, if B is too small, or A22 empty, then let's use an unblocked strategy
auto upper_diagonal = bidiagonal.template diagonal<1>();
typename MatrixType::RealScalar* upper_diagonal_ptr =
upper_diagonal.size() > 0 ? &upper_diagonal.coeffRef(k) : nullptr;
if (k + bs == cols || bcols < 48) // somewhat arbitrary threshold
{
upperbidiagonalization_inplace_unblocked(B, &(bidiagonal.template diagonal<0>().coeffRef(k)), upper_diagonal_ptr,
X.data());
break; // We're done
} else {
upperbidiagonalization_blocked_helper<BlockType>(B, &(bidiagonal.template diagonal<0>().coeffRef(k)),
upper_diagonal_ptr, bs, X.topLeftCorner(brows, bs),
Y.topLeftCorner(bcols, bs));
}
}
}
template <typename MatrixType_>
UpperBidiagonalization<MatrixType_>& UpperBidiagonalization<MatrixType_>::computeUnblocked(const MatrixType_& matrix) {
Index rows = matrix.rows();
Index cols = matrix.cols();
EIGEN_ONLY_USED_FOR_DEBUG(cols);
eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
m_householder = matrix;
ColVectorType temp(rows);
upperbidiagonalization_inplace_unblocked(m_householder, &(m_bidiagonal.template diagonal<0>().coeffRef(0)),
&(m_bidiagonal.template diagonal<1>().coeffRef(0)), temp.data());
m_isInitialized = true;
return *this;
}
template <typename MatrixType_>
UpperBidiagonalization<MatrixType_>& UpperBidiagonalization<MatrixType_>::compute(const MatrixType_& matrix) {
Index rows = matrix.rows();
Index cols = matrix.cols();
EIGEN_ONLY_USED_FOR_DEBUG(rows);
EIGEN_ONLY_USED_FOR_DEBUG(cols);
eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
m_householder = matrix;
upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal);
m_isInitialized = true;
return *this;
}
#if 0
/** \return the Householder QR decomposition of \c *this.
*
* \sa class Bidiagonalization
*/
template<typename Derived>
const UpperBidiagonalization<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::bidiagonalization() const
{
return UpperBidiagonalization<PlainObject>(eval());
}
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_BIDIAGONALIZATION_H