blob: 202f4324d0acb044d5c2e9274639d059f9cc1f5b [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "common.h"
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
extern "C" RealScalar EIGEN_BLAS_FUNC_NAME(asum)(int *n, Scalar *px, int *incx) {
// std::cerr << "_asum " << *n << " " << *incx << "\n";
Scalar *x = reinterpret_cast<Scalar *>(px);
if (*n <= 0) return 0;
if (*incx == 1)
return make_vector(x, *n).cwiseAbs().sum();
else
return make_vector(x, *n, std::abs(*incx)).cwiseAbs().sum();
}
extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amax))(int *n, Scalar *px, int *incx) {
if (*n <= 0) return 0;
Scalar *x = reinterpret_cast<Scalar *>(px);
Eigen::DenseIndex ret;
if (*incx == 1)
make_vector(x, *n).cwiseAbs().maxCoeff(&ret);
else
make_vector(x, *n, std::abs(*incx)).cwiseAbs().maxCoeff(&ret);
return int(ret) + 1;
}
extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amin))(int *n, Scalar *px, int *incx) {
if (*n <= 0) return 0;
Scalar *x = reinterpret_cast<Scalar *>(px);
Eigen::DenseIndex ret;
if (*incx == 1)
make_vector(x, *n).cwiseAbs().minCoeff(&ret);
else
make_vector(x, *n, std::abs(*incx)).cwiseAbs().minCoeff(&ret);
return int(ret) + 1;
}
// computes a vector-vector dot product.
extern "C" Scalar EIGEN_BLAS_FUNC_NAME(dot)(int *n, Scalar *px, int *incx, Scalar *py, int *incy) {
// std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n";
if (*n <= 0) return 0;
Scalar *x = reinterpret_cast<Scalar *>(px);
Scalar *y = reinterpret_cast<Scalar *>(py);
if (*incx == 1 && *incy == 1)
return (make_vector(x, *n).cwiseProduct(make_vector(y, *n))).sum();
else if (*incx > 0 && *incy > 0)
return (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, *incy))).sum();
else if (*incx < 0 && *incy > 0)
return (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, *incy))).sum();
else if (*incx > 0 && *incy < 0)
return (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum();
else if (*incx < 0 && *incy < 0)
return (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum();
else
return 0;
}
// computes the Euclidean norm of a vector.
// FIXME
extern "C" Scalar EIGEN_BLAS_FUNC_NAME(nrm2)(int *n, Scalar *px, int *incx) {
// std::cerr << "_nrm2 " << *n << " " << *incx << "\n";
if (*n <= 0) return 0;
Scalar *x = reinterpret_cast<Scalar *>(px);
if (*incx == 1)
return make_vector(x, *n).stableNorm();
else
return make_vector(x, *n, std::abs(*incx)).stableNorm();
}
EIGEN_BLAS_FUNC(rot)(int *n, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pc, Scalar *ps) {
// std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n";
if (*n <= 0) return;
Scalar *x = reinterpret_cast<Scalar *>(px);
Scalar *y = reinterpret_cast<Scalar *>(py);
Scalar c = *reinterpret_cast<Scalar *>(pc);
Scalar s = *reinterpret_cast<Scalar *>(ps);
StridedVectorType vx(make_vector(x, *n, std::abs(*incx)));
StridedVectorType vy(make_vector(y, *n, std::abs(*incy)));
Eigen::Reverse<StridedVectorType> rvx(vx);
Eigen::Reverse<StridedVectorType> rvy(vy);
if (*incx < 0 && *incy > 0)
Eigen::internal::apply_rotation_in_the_plane(rvx, vy, Eigen::JacobiRotation<Scalar>(c, s));
else if (*incx > 0 && *incy < 0)
Eigen::internal::apply_rotation_in_the_plane(vx, rvy, Eigen::JacobiRotation<Scalar>(c, s));
else
Eigen::internal::apply_rotation_in_the_plane(vx, vy, Eigen::JacobiRotation<Scalar>(c, s));
}
/*
// performs rotation of points in the modified plane.
EIGEN_BLAS_FUNC(rotm)(int *n, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *param)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
// TODO
return 0;
}
// computes the modified parameters for a Givens rotation.
EIGEN_BLAS_FUNC(rotmg)(Scalar *d1, Scalar *d2, Scalar *x1, Scalar *x2, Scalar *param)
{
// TODO
return 0;
}
*/