blob: 8732f689844dac285c17c3ea9079fe6032b0bf4a [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#if EIGEN_MAX_ALIGN_BYTES > 0
#define ALIGNMENT EIGEN_MAX_ALIGN_BYTES
#else
#define ALIGNMENT 1
#endif
typedef Matrix<float, 16, 1> Vector16f;
typedef Matrix<float, 8, 1> Vector8f;
void check_handmade_aligned_malloc() {
// Hand-make alignment needs at least sizeof(void*) to store the offset.
constexpr int alignment = (std::max<int>)(EIGEN_DEFAULT_ALIGN_BYTES, sizeof(void *));
for (int i = 1; i < 1000; i++) {
char *p = (char *)internal::handmade_aligned_malloc(i, alignment);
VERIFY(std::uintptr_t(p) % ALIGNMENT == 0);
// if the buffer is wrongly allocated this will give a bad write --> check with valgrind
for (int j = 0; j < i; j++) p[j] = 0;
internal::handmade_aligned_free(p);
}
}
void check_aligned_malloc() {
for (int i = ALIGNMENT; i < 1000; i++) {
char *p = (char *)internal::aligned_malloc(i);
VERIFY(std::uintptr_t(p) % ALIGNMENT == 0);
// if the buffer is wrongly allocated this will give a bad write --> check with valgrind
for (int j = 0; j < i; j++) p[j] = 0;
internal::aligned_free(p);
}
}
void check_aligned_new() {
for (int i = ALIGNMENT; i < 1000; i++) {
float *p = internal::aligned_new<float>(i);
VERIFY(std::uintptr_t(p) % ALIGNMENT == 0);
// if the buffer is wrongly allocated this will give a bad write --> check with valgrind
for (int j = 0; j < i; j++) p[j] = 0;
internal::aligned_delete(p, i);
}
}
void check_aligned_stack_alloc() {
for (int i = ALIGNMENT; i < 400; i++) {
ei_declare_aligned_stack_constructed_variable(float, p, i, 0);
VERIFY(std::uintptr_t(p) % ALIGNMENT == 0);
// if the buffer is wrongly allocated this will give a bad write --> check with valgrind
for (int j = 0; j < i; j++) p[j] = 0;
}
}
// test compilation with both a struct and a class...
struct MyStruct {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
char dummychar;
Vector16f avec;
};
class MyClassA {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
char dummychar;
Vector16f avec;
};
template <typename T>
void check_dynaligned() {
// TODO have to be updated once we support multiple alignment values
if (T::SizeAtCompileTime % ALIGNMENT == 0) {
T *obj = new T;
VERIFY(T::NeedsToAlign == 1);
VERIFY(std::uintptr_t(obj) % ALIGNMENT == 0);
delete obj;
}
}
template <typename T>
void check_custom_new_delete() {
{
T *t = new T;
delete t;
}
{
std::size_t N = internal::random<std::size_t>(1, 10);
T *t = new T[N];
delete[] t;
}
#if EIGEN_MAX_ALIGN_BYTES > 0 && (!EIGEN_HAS_CXX17_OVERALIGN)
{
T *t = static_cast<T *>((T::operator new)(sizeof(T)));
(T::operator delete)(t, sizeof(T));
}
{
T *t = static_cast<T *>((T::operator new)(sizeof(T)));
(T::operator delete)(t);
}
#endif
}
EIGEN_DECLARE_TEST(dynalloc) {
// low level dynamic memory allocation
CALL_SUBTEST(check_handmade_aligned_malloc());
CALL_SUBTEST(check_aligned_malloc());
CALL_SUBTEST(check_aligned_new());
CALL_SUBTEST(check_aligned_stack_alloc());
for (int i = 0; i < g_repeat * 100; ++i) {
CALL_SUBTEST(check_custom_new_delete<Vector4f>());
CALL_SUBTEST(check_custom_new_delete<Vector2f>());
CALL_SUBTEST(check_custom_new_delete<Matrix4f>());
CALL_SUBTEST(check_custom_new_delete<MatrixXi>());
}
// check static allocation, who knows ?
#if EIGEN_MAX_STATIC_ALIGN_BYTES
for (int i = 0; i < g_repeat * 100; ++i) {
CALL_SUBTEST(check_dynaligned<Vector4f>());
CALL_SUBTEST(check_dynaligned<Vector2d>());
CALL_SUBTEST(check_dynaligned<Matrix4f>());
CALL_SUBTEST(check_dynaligned<Vector4d>());
CALL_SUBTEST(check_dynaligned<Vector4i>());
CALL_SUBTEST(check_dynaligned<Vector8f>());
CALL_SUBTEST(check_dynaligned<Vector16f>());
}
{
MyStruct foo0;
VERIFY(std::uintptr_t(foo0.avec.data()) % ALIGNMENT == 0);
MyClassA fooA;
VERIFY(std::uintptr_t(fooA.avec.data()) % ALIGNMENT == 0);
}
// dynamic allocation, single object
for (int i = 0; i < g_repeat * 100; ++i) {
MyStruct *foo0 = new MyStruct();
VERIFY(std::uintptr_t(foo0->avec.data()) % ALIGNMENT == 0);
MyClassA *fooA = new MyClassA();
VERIFY(std::uintptr_t(fooA->avec.data()) % ALIGNMENT == 0);
delete foo0;
delete fooA;
}
// dynamic allocation, array
const int N = 10;
for (int i = 0; i < g_repeat * 100; ++i) {
MyStruct *foo0 = new MyStruct[N];
VERIFY(std::uintptr_t(foo0->avec.data()) % ALIGNMENT == 0);
MyClassA *fooA = new MyClassA[N];
VERIFY(std::uintptr_t(fooA->avec.data()) % ALIGNMENT == 0);
delete[] foo0;
delete[] fooA;
}
#endif
}