blob: 064cc4ac7107168c34381a007be0cd0a0946ee13 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <vector>
#include "main.h"
using Eigen::placeholders::all;
using Eigen::placeholders::last;
using Eigen::placeholders::lastN;
using Eigen::placeholders::lastp1;
#include <array>
namespace test {
typedef std::pair<Index, Index> IndexPair;
}
int encode(Index i, Index j) { return int(i * 100 + j); }
test::IndexPair decode(Index ij) { return test::IndexPair(ij / 100, ij % 100); }
template <typename T>
bool match(const T& xpr, std::string ref, std::string str_xpr = "") {
EIGEN_UNUSED_VARIABLE(str_xpr);
std::stringstream str;
str << xpr;
if (!(str.str() == ref)) std::cout << str_xpr << "\n" << xpr << "\n\n";
return str.str() == ref;
}
#define MATCH(X, R) match(X, R, #X)
template <typename T1, typename T2>
std::enable_if_t<internal::is_same<T1, T2>::value, bool> is_same_eq(const T1& a, const T2& b) {
return (a == b).all();
}
template <typename T1, typename T2>
bool is_same_seq(const T1& a, const T2& b) {
bool ok = a.first() == b.first() && a.size() == b.size() && Index(a.incrObject()) == Index(b.incrObject());
;
if (!ok) {
std::cerr << "seqN(" << a.first() << ", " << a.size() << ", " << Index(a.incrObject()) << ") != ";
std::cerr << "seqN(" << b.first() << ", " << b.size() << ", " << Index(b.incrObject()) << ")\n";
}
return ok;
}
template <typename T1, typename T2>
std::enable_if_t<internal::is_same<T1, T2>::value, bool> is_same_seq_type(const T1& a, const T2& b) {
return is_same_seq(a, b);
}
#define VERIFY_EQ_INT(A, B) VERIFY_IS_APPROX(int(A), int(B))
// C++03 does not allow local or unnamed enums as index
enum DummyEnum { XX = 0, YY = 1 };
void check_indexed_view() {
Index n = 10;
ArrayXd a = ArrayXd::LinSpaced(n, 0, n - 1);
Array<double, 1, Dynamic> b = a.transpose();
ArrayXXi A = ArrayXXi::NullaryExpr(n, n, std::ref(encode));
for (Index i = 0; i < n; ++i)
for (Index j = 0; j < n; ++j) VERIFY(decode(A(i, j)) == test::IndexPair(i, j));
Array4i eii(4);
eii << 3, 1, 6, 5;
std::vector<int> veci(4);
Map<ArrayXi>(veci.data(), 4) = eii;
VERIFY(MATCH(A(3, seq(9, 3, -1)), "309 308 307 306 305 304 303"));
VERIFY(MATCH(A(seqN(2, 5), seq(9, 3, -1)),
"209 208 207 206 205 204 203\n"
"309 308 307 306 305 304 303\n"
"409 408 407 406 405 404 403\n"
"509 508 507 506 505 504 503\n"
"609 608 607 606 605 604 603"));
VERIFY(MATCH(A(seqN(2, 5), 5),
"205\n"
"305\n"
"405\n"
"505\n"
"605"));
VERIFY(MATCH(A(seqN(last, 5, -1), seq(2, last)),
"902 903 904 905 906 907 908 909\n"
"802 803 804 805 806 807 808 809\n"
"702 703 704 705 706 707 708 709\n"
"602 603 604 605 606 607 608 609\n"
"502 503 504 505 506 507 508 509"));
VERIFY(MATCH(A(eii, veci),
"303 301 306 305\n"
"103 101 106 105\n"
"603 601 606 605\n"
"503 501 506 505"));
VERIFY(MATCH(A(eii, all),
"300 301 302 303 304 305 306 307 308 309\n"
"100 101 102 103 104 105 106 107 108 109\n"
"600 601 602 603 604 605 606 607 608 609\n"
"500 501 502 503 504 505 506 507 508 509"));
// take row number 3, and repeat it 5 times
VERIFY(MATCH(A(seqN(3, 5, 0), all),
"300 301 302 303 304 305 306 307 308 309\n"
"300 301 302 303 304 305 306 307 308 309\n"
"300 301 302 303 304 305 306 307 308 309\n"
"300 301 302 303 304 305 306 307 308 309\n"
"300 301 302 303 304 305 306 307 308 309"));
VERIFY(MATCH(a(seqN(3, 3), 0), "3\n4\n5"));
VERIFY(MATCH(a(seq(3, 5)), "3\n4\n5"));
VERIFY(MATCH(a(seqN(3, 3, 1)), "3\n4\n5"));
VERIFY(MATCH(a(seqN(5, 3, -1)), "5\n4\n3"));
VERIFY(MATCH(b(0, seqN(3, 3)), "3 4 5"));
VERIFY(MATCH(b(seq(3, 5)), "3 4 5"));
VERIFY(MATCH(b(seqN(3, 3, 1)), "3 4 5"));
VERIFY(MATCH(b(seqN(5, 3, -1)), "5 4 3"));
VERIFY(MATCH(b(all), "0 1 2 3 4 5 6 7 8 9"));
VERIFY(MATCH(b(eii), "3 1 6 5"));
Array44i B;
B.setRandom();
VERIFY((A(seqN(2, 5), 5)).ColsAtCompileTime == 1);
VERIFY((A(seqN(2, 5), 5)).RowsAtCompileTime == Dynamic);
VERIFY_EQ_INT((A(seqN(2, 5), 5)).InnerStrideAtCompileTime, A.InnerStrideAtCompileTime);
VERIFY_EQ_INT((A(seqN(2, 5), 5)).OuterStrideAtCompileTime, A.col(5).OuterStrideAtCompileTime);
VERIFY_EQ_INT((A(5, seqN(2, 5))).InnerStrideAtCompileTime, A.row(5).InnerStrideAtCompileTime);
VERIFY_EQ_INT((A(5, seqN(2, 5))).OuterStrideAtCompileTime, A.row(5).OuterStrideAtCompileTime);
VERIFY_EQ_INT((B(1, seqN(1, 2))).InnerStrideAtCompileTime, B.row(1).InnerStrideAtCompileTime);
VERIFY_EQ_INT((B(1, seqN(1, 2))).OuterStrideAtCompileTime, B.row(1).OuterStrideAtCompileTime);
VERIFY_EQ_INT((A(seqN(2, 5), seq(1, 3))).InnerStrideAtCompileTime, A.InnerStrideAtCompileTime);
VERIFY_EQ_INT((A(seqN(2, 5), seq(1, 3))).OuterStrideAtCompileTime, A.OuterStrideAtCompileTime);
VERIFY_EQ_INT((B(seqN(1, 2), seq(1, 3))).InnerStrideAtCompileTime, B.InnerStrideAtCompileTime);
VERIFY_EQ_INT((B(seqN(1, 2), seq(1, 3))).OuterStrideAtCompileTime, B.OuterStrideAtCompileTime);
VERIFY_EQ_INT((A(seqN(2, 5, 2), seq(1, 3, 2))).InnerStrideAtCompileTime, Dynamic);
VERIFY_EQ_INT((A(seqN(2, 5, 2), seq(1, 3, 2))).OuterStrideAtCompileTime, Dynamic);
VERIFY_EQ_INT((A(seqN(2, 5, fix<2>), seq(1, 3, fix<3>))).InnerStrideAtCompileTime, 2);
VERIFY_EQ_INT((A(seqN(2, 5, fix<2>), seq(1, 3, fix<3>))).OuterStrideAtCompileTime, Dynamic);
VERIFY_EQ_INT((B(seqN(1, 2, fix<2>), seq(1, 3, fix<3>))).InnerStrideAtCompileTime, 2);
VERIFY_EQ_INT((B(seqN(1, 2, fix<2>), seq(1, 3, fix<3>))).OuterStrideAtCompileTime, 3 * 4);
VERIFY_EQ_INT((A(seqN(2, fix<5>), seqN(1, fix<3>))).RowsAtCompileTime, 5);
VERIFY_EQ_INT((A(seqN(2, fix<5>), seqN(1, fix<3>))).ColsAtCompileTime, 3);
VERIFY_EQ_INT((A(seqN(2, fix<5>(5)), seqN(1, fix<3>(3)))).RowsAtCompileTime, 5);
VERIFY_EQ_INT((A(seqN(2, fix<5>(5)), seqN(1, fix<3>(3)))).ColsAtCompileTime, 3);
VERIFY_EQ_INT((A(seqN(2, fix<Dynamic>(5)), seqN(1, fix<Dynamic>(3)))).RowsAtCompileTime, Dynamic);
VERIFY_EQ_INT((A(seqN(2, fix<Dynamic>(5)), seqN(1, fix<Dynamic>(3)))).ColsAtCompileTime, Dynamic);
VERIFY_EQ_INT((A(seqN(2, fix<Dynamic>(5)), seqN(1, fix<Dynamic>(3)))).rows(), 5);
VERIFY_EQ_INT((A(seqN(2, fix<Dynamic>(5)), seqN(1, fix<Dynamic>(3)))).cols(), 3);
VERIFY(is_same_seq_type(seqN(2, 5, fix<-1>), seqN(2, 5, fix<-1>(-1))));
VERIFY(is_same_seq_type(seqN(2, 5), seqN(2, 5, fix<1>(1))));
VERIFY(is_same_seq_type(seqN(2, 5, 3), seqN(2, 5, fix<DynamicIndex>(3))));
VERIFY(is_same_seq_type(seq(2, 7, fix<3>), seqN(2, 2, fix<3>)));
VERIFY(is_same_seq_type(seqN(2, fix<Dynamic>(5), 3), seqN(2, 5, fix<DynamicIndex>(3))));
VERIFY(is_same_seq_type(seqN(2, fix<5>(5), fix<-2>), seqN(2, fix<5>, fix<-2>())));
VERIFY(is_same_seq_type(seq(2, fix<5>), seqN(2, 4)));
VERIFY(is_same_seq_type(seq(fix<2>, fix<5>), seqN(fix<2>, fix<4>)));
VERIFY(is_same_seq(seqN(2, std::integral_constant<int, 5>(), std::integral_constant<int, -2>()),
seqN(2, fix<5>, fix<-2>())));
VERIFY(is_same_seq(
seq(std::integral_constant<int, 1>(), std::integral_constant<int, 5>(), std::integral_constant<int, 2>()),
seq(fix<1>, fix<5>, fix<2>())));
VERIFY(is_same_seq_type(seqN(2, std::integral_constant<int, 5>(), std::integral_constant<int, -2>()),
seqN(2, fix<5>, fix<-2>())));
VERIFY(is_same_seq_type(
seq(std::integral_constant<int, 1>(), std::integral_constant<int, 5>(), std::integral_constant<int, 2>()),
seq(fix<1>, fix<5>, fix<2>())));
VERIFY(is_same_seq_type(seqN(2, std::integral_constant<int, 5>()), seqN(2, fix<5>)));
VERIFY(
is_same_seq_type(seq(std::integral_constant<int, 1>(), std::integral_constant<int, 5>()), seq(fix<1>, fix<5>)));
VERIFY((A(seqN(2, fix<5>), 5)).RowsAtCompileTime == 5);
VERIFY((A(4, all)).ColsAtCompileTime == Dynamic);
VERIFY((A(4, all)).RowsAtCompileTime == 1);
VERIFY((B(1, all)).ColsAtCompileTime == 4);
VERIFY((B(1, all)).RowsAtCompileTime == 1);
VERIFY((B(all, 1)).ColsAtCompileTime == 1);
VERIFY((B(all, 1)).RowsAtCompileTime == 4);
VERIFY(int((A(all, eii)).ColsAtCompileTime) == int(eii.SizeAtCompileTime));
VERIFY_EQ_INT((A(eii, eii)).Flags & DirectAccessBit, (unsigned int)(0));
VERIFY_EQ_INT((A(eii, eii)).InnerStrideAtCompileTime, 0);
VERIFY_EQ_INT((A(eii, eii)).OuterStrideAtCompileTime, 0);
VERIFY_IS_APPROX(A(seq(n - 1, 2, -2), seqN(n - 1 - 6, 3, -1)), A(seq(last, 2, fix<-2>), seqN(last - 6, 3, fix<-1>)));
VERIFY_IS_APPROX(A(seq(n - 1, 2, -2), seqN(n - 1 - 6, 4)), A(seq(last, 2, -2), seqN(last - 6, 4)));
VERIFY_IS_APPROX(A(seq(n - 1 - 6, n - 1 - 2), seqN(n - 1 - 6, 4)),
A(seq(last - 6, last - 2), seqN(6 + last - 6 - 6, 4)));
VERIFY_IS_APPROX(A(seq((n - 1) / 2, (n) / 2 + 3), seqN(2, 4)),
A(seq(last / 2, (last + 1) / 2 + 3), seqN(last + 2 - last, 4)));
VERIFY_IS_APPROX(A(seq(n - 2, 2, -2), seqN(n - 8, 4)), A(seq(lastp1 - 2, 2, -2), seqN(lastp1 - 8, 4)));
// Check all combinations of seq:
VERIFY_IS_APPROX(A(seq(1, n - 1 - 2, 2), seq(1, n - 1 - 2, 2)), A(seq(1, last - 2, 2), seq(1, last - 2, fix<2>)));
VERIFY_IS_APPROX(A(seq(n - 1 - 5, n - 1 - 2, 2), seq(n - 1 - 5, n - 1 - 2, 2)),
A(seq(last - 5, last - 2, 2), seq(last - 5, last - 2, fix<2>)));
VERIFY_IS_APPROX(A(seq(n - 1 - 5, 7, 2), seq(n - 1 - 5, 7, 2)), A(seq(last - 5, 7, 2), seq(last - 5, 7, fix<2>)));
VERIFY_IS_APPROX(A(seq(1, n - 1 - 2), seq(n - 1 - 5, 7)), A(seq(1, last - 2), seq(last - 5, 7)));
VERIFY_IS_APPROX(A(seq(n - 1 - 5, n - 1 - 2), seq(n - 1 - 5, n - 1 - 2)),
A(seq(last - 5, last - 2), seq(last - 5, last - 2)));
VERIFY_IS_APPROX(A.col(A.cols() - 1), A(all, last));
VERIFY_IS_APPROX(A(A.rows() - 2, A.cols() / 2), A(last - 1, lastp1 / 2));
VERIFY_IS_APPROX(a(a.size() - 2), a(last - 1));
VERIFY_IS_APPROX(a(a.size() / 2), a((last + 1) / 2));
// Check fall-back to Block
{
VERIFY(is_same_eq(A.col(0), A(all, 0)));
VERIFY(is_same_eq(A.row(0), A(0, all)));
VERIFY(is_same_eq(A.block(0, 0, 2, 2), A(seqN(0, 2), seq(0, 1))));
VERIFY(is_same_eq(A.middleRows(2, 4), A(seqN(2, 4), all)));
VERIFY(is_same_eq(A.middleCols(2, 4), A(all, seqN(2, 4))));
VERIFY(is_same_eq(A.col(A.cols() - 1), A(all, last)));
const ArrayXXi& cA(A);
VERIFY(is_same_eq(cA.col(0), cA(all, 0)));
VERIFY(is_same_eq(cA.row(0), cA(0, all)));
VERIFY(is_same_eq(cA.block(0, 0, 2, 2), cA(seqN(0, 2), seq(0, 1))));
VERIFY(is_same_eq(cA.middleRows(2, 4), cA(seqN(2, 4), all)));
VERIFY(is_same_eq(cA.middleCols(2, 4), cA(all, seqN(2, 4))));
VERIFY(is_same_eq(a.head(4), a(seq(0, 3))));
VERIFY(is_same_eq(a.tail(4), a(seqN(last - 3, 4))));
VERIFY(is_same_eq(a.tail(4), a(seq(lastp1 - 4, last))));
VERIFY(is_same_eq(a.segment<4>(3), a(seqN(3, fix<4>))));
}
ArrayXXi A1 = A, A2 = ArrayXXi::Random(4, 4);
ArrayXi range25(4);
range25 << 3, 2, 4, 5;
A1(seqN(3, 4), seq(2, 5)) = A2;
VERIFY_IS_APPROX(A1.block(3, 2, 4, 4), A2);
A1 = A;
A2.setOnes();
A1(seq(6, 3, -1), range25) = A2;
VERIFY_IS_APPROX(A1.block(3, 2, 4, 4), A2);
// check reverse
{
VERIFY(is_same_seq_type(seq(3, 7).reverse(), seqN(7, 5, fix<-1>)));
VERIFY(is_same_seq_type(seq(7, 3, fix<-2>).reverse(), seqN(3, 3, fix<2>)));
VERIFY_IS_APPROX(a(seqN(2, last / 2).reverse()), a(seqN(2 + (last / 2 - 1) * 1, last / 2, fix<-1>)));
VERIFY_IS_APPROX(a(seqN(last / 2, fix<4>).reverse()), a(seqN(last / 2, fix<4>)).reverse());
VERIFY_IS_APPROX(A(seq(last - 5, last - 1, 2).reverse(), seqN(last - 3, 3, fix<-2>).reverse()),
A(seq(last - 5, last - 1, 2), seqN(last - 3, 3, fix<-2>)).reverse());
}
// check lastN
VERIFY_IS_APPROX(a(lastN(3)), a.tail(3));
VERIFY(MATCH(a(lastN(3)), "7\n8\n9"));
VERIFY_IS_APPROX(a(lastN(fix<3>())), a.tail<3>());
VERIFY(MATCH(a(lastN(3, 2)), "5\n7\n9"));
VERIFY(MATCH(a(lastN(3, fix<2>())), "5\n7\n9"));
VERIFY(a(lastN(fix<3>())).SizeAtCompileTime == 3);
VERIFY((A(all, std::array<int, 4>{{1, 3, 2, 4}})).ColsAtCompileTime == 4);
VERIFY_IS_APPROX((A(std::array<int, 3>{{1, 3, 5}}, std::array<int, 4>{{9, 6, 3, 0}})),
A(seqN(1, 3, 2), seqN(9, 4, -3)));
VERIFY_IS_EQUAL(A(std::array<int, 3>{1, 3, 5}, std::array<int, 4>{3, 1, 6, 5}).RowsAtCompileTime, 3);
VERIFY_IS_EQUAL(A(std::array<int, 3>{1, 3, 5}, std::array<int, 4>{3, 1, 6, 5}).ColsAtCompileTime, 4);
VERIFY_IS_EQUAL(a(std::array<int, 3>{1, 3, 5}).SizeAtCompileTime, 3);
VERIFY_IS_EQUAL(b(std::array<int, 3>{1, 3, 5}).SizeAtCompileTime, 3);
// check different index types (C-style array, STL container, Eigen type)
{
Index size = 10;
ArrayXd r = ArrayXd::Random(size);
ArrayXi idx = ArrayXi::EqualSpaced(size, 0, 1);
std::shuffle(idx.begin(), idx.end(), std::random_device());
int c_array[3] = {idx[0], idx[1], idx[2]};
std::vector<int> std_vector{idx[0], idx[1], idx[2]};
Matrix<int, 3, 1> eigen_matrix{idx[0], idx[1], idx[2]};
// non-const access
VERIFY_IS_CWISE_EQUAL(r({idx[0], idx[1], idx[2]}), r(c_array));
VERIFY_IS_CWISE_EQUAL(r({idx[0], idx[1], idx[2]}), r(std_vector));
VERIFY_IS_CWISE_EQUAL(r({idx[0], idx[1], idx[2]}), r(eigen_matrix));
VERIFY_IS_CWISE_EQUAL(r(std_vector), r(c_array));
VERIFY_IS_CWISE_EQUAL(r(std_vector), r(eigen_matrix));
VERIFY_IS_CWISE_EQUAL(r(eigen_matrix), r(c_array));
const ArrayXd& r_ref = r;
// const access
VERIFY_IS_CWISE_EQUAL(r_ref({idx[0], idx[1], idx[2]}), r_ref(c_array));
VERIFY_IS_CWISE_EQUAL(r_ref({idx[0], idx[1], idx[2]}), r_ref(std_vector));
VERIFY_IS_CWISE_EQUAL(r_ref({idx[0], idx[1], idx[2]}), r_ref(eigen_matrix));
VERIFY_IS_CWISE_EQUAL(r_ref(std_vector), r_ref(c_array));
VERIFY_IS_CWISE_EQUAL(r_ref(std_vector), r_ref(eigen_matrix));
VERIFY_IS_CWISE_EQUAL(r_ref(eigen_matrix), r_ref(c_array));
}
{
Index rows = 8;
Index cols = 11;
ArrayXXd R = ArrayXXd::Random(rows, cols);
ArrayXi r_idx = ArrayXi::EqualSpaced(rows, 0, 1);
ArrayXi c_idx = ArrayXi::EqualSpaced(cols, 0, 1);
std::shuffle(r_idx.begin(), r_idx.end(), std::random_device());
std::shuffle(c_idx.begin(), c_idx.end(), std::random_device());
int c_array_rows[3] = {r_idx[0], r_idx[1], r_idx[2]};
int c_array_cols[4] = {c_idx[0], c_idx[1], c_idx[2], c_idx[3]};
std::vector<int> std_vector_rows{r_idx[0], r_idx[1], r_idx[2]};
std::vector<int> std_vector_cols{c_idx[0], c_idx[1], c_idx[2], c_idx[3]};
Matrix<int, 3, 1> eigen_matrix_rows{r_idx[0], r_idx[1], r_idx[2]};
Matrix<int, 4, 1> eigen_matrix_cols{c_idx[0], c_idx[1], c_idx[2], c_idx[3]};
// non-const access
VERIFY_IS_CWISE_EQUAL(R({r_idx[0], r_idx[1], r_idx[2]}, {c_idx[0], c_idx[1], c_idx[2], c_idx[3]}),
R(c_array_rows, c_array_cols));
VERIFY_IS_CWISE_EQUAL(R({r_idx[0], r_idx[1], r_idx[2]}, {c_idx[0], c_idx[1], c_idx[2], c_idx[3]}),
R(std_vector_rows, std_vector_cols));
VERIFY_IS_CWISE_EQUAL(R({r_idx[0], r_idx[1], r_idx[2]}, {c_idx[0], c_idx[1], c_idx[2], c_idx[3]}),
R(eigen_matrix_rows, eigen_matrix_cols));
VERIFY_IS_CWISE_EQUAL(R(std_vector_rows, std_vector_cols), R(c_array_rows, c_array_cols));
VERIFY_IS_CWISE_EQUAL(R(std_vector_rows, std_vector_cols), R(eigen_matrix_rows, eigen_matrix_cols));
VERIFY_IS_CWISE_EQUAL(R(eigen_matrix_rows, eigen_matrix_cols), R(c_array_rows, c_array_cols));
const ArrayXXd& R_ref = R;
// const access
VERIFY_IS_CWISE_EQUAL(R_ref({r_idx[0], r_idx[1], r_idx[2]}, {c_idx[0], c_idx[1], c_idx[2], c_idx[3]}),
R_ref(c_array_rows, c_array_cols));
VERIFY_IS_CWISE_EQUAL(R_ref({r_idx[0], r_idx[1], r_idx[2]}, {c_idx[0], c_idx[1], c_idx[2], c_idx[3]}),
R_ref(std_vector_rows, std_vector_cols));
VERIFY_IS_CWISE_EQUAL(R_ref({r_idx[0], r_idx[1], r_idx[2]}, {c_idx[0], c_idx[1], c_idx[2], c_idx[3]}),
R_ref(eigen_matrix_rows, eigen_matrix_cols));
VERIFY_IS_CWISE_EQUAL(R_ref(std_vector_rows, std_vector_cols), R_ref(c_array_rows, c_array_cols));
VERIFY_IS_CWISE_EQUAL(R_ref(std_vector_rows, std_vector_cols), R_ref(eigen_matrix_rows, eigen_matrix_cols));
VERIFY_IS_CWISE_EQUAL(R_ref(eigen_matrix_rows, eigen_matrix_cols), R_ref(c_array_rows, c_array_cols));
}
// check mat(i,j) with weird types for i and j
{
VERIFY_IS_APPROX(A(B.RowsAtCompileTime - 1, 1), A(3, 1));
VERIFY_IS_APPROX(A(B.RowsAtCompileTime, 1), A(4, 1));
VERIFY_IS_APPROX(A(B.RowsAtCompileTime - 1, B.ColsAtCompileTime - 1), A(3, 3));
VERIFY_IS_APPROX(A(B.RowsAtCompileTime, B.ColsAtCompileTime), A(4, 4));
const Index I_ = 3, J_ = 4;
VERIFY_IS_APPROX(A(I_, J_), A(3, 4));
}
// check extended block API
{
VERIFY(is_same_eq(A.block<3, 4>(1, 1), A.block(1, 1, fix<3>, fix<4>)));
VERIFY(is_same_eq(A.block<3, 4>(1, 1, 3, 4), A.block(1, 1, fix<3>(), fix<4>(4))));
VERIFY(is_same_eq(A.block<3, Dynamic>(1, 1, 3, 4), A.block(1, 1, fix<3>, 4)));
VERIFY(is_same_eq(A.block<Dynamic, 4>(1, 1, 3, 4), A.block(1, 1, fix<Dynamic>(3), fix<4>)));
VERIFY(is_same_eq(A.block(1, 1, 3, 4), A.block(1, 1, fix<Dynamic>(3), fix<Dynamic>(4))));
VERIFY(is_same_eq(A.topLeftCorner<3, 4>(), A.topLeftCorner(fix<3>, fix<4>)));
VERIFY(is_same_eq(A.bottomLeftCorner<3, 4>(), A.bottomLeftCorner(fix<3>, fix<4>)));
VERIFY(is_same_eq(A.bottomRightCorner<3, 4>(), A.bottomRightCorner(fix<3>, fix<4>)));
VERIFY(is_same_eq(A.topRightCorner<3, 4>(), A.topRightCorner(fix<3>, fix<4>)));
VERIFY(is_same_eq(A.leftCols<3>(), A.leftCols(fix<3>)));
VERIFY(is_same_eq(A.rightCols<3>(), A.rightCols(fix<3>)));
VERIFY(is_same_eq(A.middleCols<3>(1), A.middleCols(1, fix<3>)));
VERIFY(is_same_eq(A.topRows<3>(), A.topRows(fix<3>)));
VERIFY(is_same_eq(A.bottomRows<3>(), A.bottomRows(fix<3>)));
VERIFY(is_same_eq(A.middleRows<3>(1), A.middleRows(1, fix<3>)));
VERIFY(is_same_eq(a.segment<3>(1), a.segment(1, fix<3>)));
VERIFY(is_same_eq(a.head<3>(), a.head(fix<3>)));
VERIFY(is_same_eq(a.tail<3>(), a.tail(fix<3>)));
const ArrayXXi& cA(A);
VERIFY(is_same_eq(cA.block<Dynamic, 4>(1, 1, 3, 4), cA.block(1, 1, fix<Dynamic>(3), fix<4>)));
VERIFY(is_same_eq(cA.topLeftCorner<3, 4>(), cA.topLeftCorner(fix<3>, fix<4>)));
VERIFY(is_same_eq(cA.bottomLeftCorner<3, 4>(), cA.bottomLeftCorner(fix<3>, fix<4>)));
VERIFY(is_same_eq(cA.bottomRightCorner<3, 4>(), cA.bottomRightCorner(fix<3>, fix<4>)));
VERIFY(is_same_eq(cA.topRightCorner<3, 4>(), cA.topRightCorner(fix<3>, fix<4>)));
VERIFY(is_same_eq(cA.leftCols<3>(), cA.leftCols(fix<3>)));
VERIFY(is_same_eq(cA.rightCols<3>(), cA.rightCols(fix<3>)));
VERIFY(is_same_eq(cA.middleCols<3>(1), cA.middleCols(1, fix<3>)));
VERIFY(is_same_eq(cA.topRows<3>(), cA.topRows(fix<3>)));
VERIFY(is_same_eq(cA.bottomRows<3>(), cA.bottomRows(fix<3>)));
VERIFY(is_same_eq(cA.middleRows<3>(1), cA.middleRows(1, fix<3>)));
}
// Check compilation of enums as index type:
a(XX) = 1;
A(XX, YY) = 1;
// Anonymous enums only work with C++11
enum { X = 0, Y = 1 };
a(X) = 1;
A(X, Y) = 1;
A(XX, Y) = 1;
A(X, YY) = 1;
// check symbolic indices
a(last) = 1.0;
A(last, last) = 1;
// check weird non-const, non-lvalue scenarios
{
// in these scenarios, the objects are not declared 'const', and the compiler will atttempt to use the non-const
// overloads without intervention
// non-const map to a const object
Map<const ArrayXd> a_map(a.data(), a.size());
Map<const ArrayXXi> A_map(A.data(), A.rows(), A.cols());
VERIFY_IS_EQUAL(a_map(last), a.coeff(a.size() - 1));
VERIFY_IS_EQUAL(A_map(last, last), A.coeff(A.rows() - 1, A.cols() - 1));
// non-const expressions that have no modifiable data
using Op = internal::scalar_constant_op<double>;
using VectorXpr = CwiseNullaryOp<Op, VectorXd>;
using MatrixXpr = CwiseNullaryOp<Op, MatrixXd>;
double constant_val = internal::random<double>();
Op op(constant_val);
VectorXpr vectorXpr(10, 1, op);
MatrixXpr matrixXpr(8, 11, op);
VERIFY_IS_EQUAL(vectorXpr.coeff(vectorXpr.size() - 1), vectorXpr(last));
VERIFY_IS_EQUAL(matrixXpr.coeff(matrixXpr.rows() - 1, matrixXpr.cols() - 1), matrixXpr(last, last));
}
// Check compilation of varying integer types as index types:
Index i = n / 2;
short i_short = static_cast<short>(i);
std::size_t i_sizet(i);
VERIFY_IS_EQUAL(a(i), a.coeff(i_short));
VERIFY_IS_EQUAL(a(i), a.coeff(i_sizet));
VERIFY_IS_EQUAL(A(i, i), A.coeff(i_short, i_short));
VERIFY_IS_EQUAL(A(i, i), A.coeff(i_short, i));
VERIFY_IS_EQUAL(A(i, i), A.coeff(i, i_short));
VERIFY_IS_EQUAL(A(i, i), A.coeff(i, i_sizet));
VERIFY_IS_EQUAL(A(i, i), A.coeff(i_sizet, i));
VERIFY_IS_EQUAL(A(i, i), A.coeff(i_sizet, i_short));
VERIFY_IS_EQUAL(A(i, i), A.coeff(5, i_sizet));
// Regression test for Max{Rows,Cols}AtCompileTime
{
Matrix3i A3 = Matrix3i::Random();
ArrayXi ind(5);
ind << 1, 1, 1, 1, 1;
VERIFY_IS_EQUAL(A3(ind, ind).eval(), MatrixXi::Constant(5, 5, A3(1, 1)));
}
// Regression for bug 1736
{
VERIFY_IS_APPROX(A(all, eii).col(0).eval(), A.col(eii(0)));
A(all, eii).col(0) = A.col(eii(0));
}
// bug 1815: IndexedView should allow linear access
{
VERIFY(MATCH(b(eii)(0), "3"));
VERIFY(MATCH(a(eii)(0), "3"));
VERIFY(MATCH(A(1, eii)(0), "103"));
VERIFY(MATCH(A(eii, 1)(0), "301"));
VERIFY(MATCH(A(1, all)(1), "101"));
VERIFY(MATCH(A(all, 1)(1), "101"));
}
// bug #2375: indexing over matrices of dim >128 should compile on gcc
{
Matrix<double, 513, 3> large_mat = Matrix<double, 513, 3>::Random();
std::array<int, 2> test_indices = {0, 1};
Matrix<double, 513, 2> thin_slice = large_mat(all, test_indices);
for (int col = 0; col < int(test_indices.size()); ++col)
for (int row = 0; row < large_mat.rows(); ++row) VERIFY_IS_EQUAL(thin_slice(row, col), large_mat(row, col));
}
// Bug IndexView with a single static row should be RowMajor:
{
// A(1, seq(0,2,1)).cwiseAbs().colwise().replicate(2).eval();
STATIC_CHECK(((internal::evaluator<decltype(A(1, seq(0, 2, 1)))>::Flags & RowMajorBit) == RowMajorBit));
}
// Direct access.
{
int rows = 3;
int row_start = internal::random<int>(0, rows - 1);
int row_inc = internal::random<int>(1, rows - row_start);
int row_size = internal::random<int>(1, (rows - row_start) / row_inc);
auto row_seq = seqN(row_start, row_size, row_inc);
int cols = 3;
int col_start = internal::random<int>(0, cols - 1);
int col_inc = internal::random<int>(1, cols - col_start);
int col_size = internal::random<int>(1, (cols - col_start) / col_inc);
auto col_seq = seqN(col_start, col_size, col_inc);
MatrixXd m1 = MatrixXd::Random(rows, cols);
MatrixXd m2 = MatrixXd::Random(cols, rows);
VERIFY_IS_APPROX(m1(row_seq, indexing::all) * m2, m1(row_seq, indexing::all).eval() * m2);
VERIFY_IS_APPROX(m1 * m2(indexing::all, col_seq), m1 * m2(indexing::all, col_seq).eval());
VERIFY_IS_APPROX(m1(row_seq, col_seq) * m2(col_seq, row_seq),
m1(row_seq, col_seq).eval() * m2(col_seq, row_seq).eval());
VectorXd v1 = VectorXd::Random(cols);
VERIFY_IS_APPROX(m1(row_seq, col_seq) * v1(col_seq), m1(row_seq, col_seq).eval() * v1(col_seq).eval());
VERIFY_IS_APPROX(v1(col_seq).transpose() * m2(col_seq, row_seq),
v1(col_seq).transpose().eval() * m2(col_seq, row_seq).eval());
}
}
void check_tutorial_examples() {
constexpr int kRows = 11;
constexpr int kCols = 21;
Matrix<double, kRows, kCols> A = Matrix<double, kRows, kCols>::Random();
Vector<double, kRows> v = Vector<double, kRows>::Random();
{
auto slice = A(seqN(fix<0>, fix<5>, fix<2>), seqN(fix<2>, fix<7>, fix<1>));
EIGEN_UNUSED_VARIABLE(slice);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), 5);
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), 7);
}
{
auto slice = A(seqN(fix<0>, fix<5>, fix<2>), indexing::all);
EIGEN_UNUSED_VARIABLE(slice);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), 5);
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), kCols);
}
// Examples from slicing tutorial.
// Bottom-left corner.
{
Index i = 3;
Index n = 5;
auto slice = A(seq(i, indexing::last), seqN(0, n));
auto block = A.bottomLeftCorner(A.rows() - i, n);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), Dynamic);
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), Dynamic);
VERIFY_IS_EQUAL(slice, block);
}
{
auto i = fix<3>;
auto n = fix<5>;
auto slice = A(seq(i, indexing::last), seqN(fix<0>, n));
auto block = A.bottomLeftCorner(fix<kRows> - i, n);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), A.RowsAtCompileTime - i);
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), n);
VERIFY_IS_EQUAL(slice, block);
}
// Block starting at i,j of size m,n.
{
Index i = 4;
Index j = 2;
Index m = 3;
Index n = 5;
auto slice = A(seqN(i, m), seqN(j, n));
auto block = A.block(i, j, m, n);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
{
auto i = fix<4>;
auto j = fix<2>;
auto m = fix<3>;
auto n = fix<5>;
auto slice = A(seqN(i, m), seqN(j, n));
auto block = A.block(i, j, m, n);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
// Block starting at i0,j0 and ending at i1,j1.
{
Index i0 = 4;
Index i1 = 7;
Index j0 = 3;
Index j1 = 5;
auto slice = A(seq(i0, i1), seq(j0, j1));
auto block = A.block(i0, j0, i1 - i0 + 1, j1 - j0 + 1);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
{
auto i0 = fix<4>;
auto i1 = fix<7>;
auto j0 = fix<3>;
auto j1 = fix<5>;
auto slice = A(seq(i0, i1), seq(j0, j1));
auto block = A.block(i0, j0, i1 - i0 + fix<1>, j1 - j0 + fix<1>);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
// Even columns of A.
{
auto slice = A(all, seq(0, last, 2));
auto block =
Eigen::Map<Eigen::Matrix<double, kRows, Dynamic>, 0, OuterStride<2 * kRows>>(A.data(), kRows, (kCols + 1) / 2);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
{
auto slice = A(all, seq(fix<0>, last, fix<2>));
auto block = Eigen::Map<Eigen::Matrix<double, kRows, (kCols + 1) / 2>, 0, OuterStride<2 * kRows>>(A.data());
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
// First n odd rows of A.
{
Index n = 3;
auto slice = A(seqN(1, n, 2), all);
auto block = Eigen::Map<Eigen::Matrix<double, Dynamic, kCols>, 0, Stride<kRows, 2>>(A.data() + 1, n, kCols);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
{
auto n = fix<3>;
auto slice = A(seqN(fix<1>, n, fix<2>), all);
auto block = Eigen::Map<Eigen::Matrix<double, 3, kCols>, 0, Stride<kRows, 2>>(A.data() + 1);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
// The second-last column.
{
auto slice = A(all, last - 1);
auto block = A.col(A.cols() - 2);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
{
auto slice = A(all, last - fix<1>);
auto block = A.col(fix<kCols> - fix<2>);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
// The middle row.
{
auto slice = A(last / 2, all);
auto block = A.row((A.rows() - 1) / 2);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
{
auto slice = A(last / fix<2>, all);
auto block = A.row(fix<(kRows - 1) / 2>);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
// Last elements of v starting at i.
{
Index i = 7;
auto slice = v(seq(i, last));
auto block = v.tail(v.size() - i);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
{
auto i = fix<7>;
auto slice = v(seq(i, last));
auto block = v.tail(fix<kRows> - i);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
// Last n elements of v.
{
Index n = 6;
auto slice = v(seq(last + 1 - n, last));
auto block = v.tail(n);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
{
auto n = fix<6>;
auto slice = v(seq(last + fix<1> - n, last));
auto block = v.tail(n);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
// Last n elements of v.
{
Index n = 6;
auto slice = v(lastN(n));
auto block = v.tail(n);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
{
auto n = fix<6>;
auto slice = v(lastN(n));
auto block = v.tail(n);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
// Bottom-right corner of A of size m times n.
{
Index m = 3;
Index n = 6;
auto slice = A(lastN(m), lastN(n));
auto block = A.bottomRightCorner(m, n);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
{
auto m = fix<3>;
auto n = fix<6>;
auto slice = A(lastN(m), lastN(n));
auto block = A.bottomRightCorner(m, n);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
// Last n columns with a stride of 3.
{
Index n = 4;
constexpr Index stride = 3;
auto slice = A(all, lastN(n, stride));
auto block = Eigen::Map<Eigen::Matrix<double, kRows, Dynamic>, 0, OuterStride<stride * kRows>>(
A.data() + (kCols - 1 - (n - 1) * stride) * kRows, A.rows(), n);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
{
constexpr auto n = fix<4>;
constexpr auto stride = fix<3>;
auto slice = A(all, lastN(n, stride));
auto block = Eigen::Map<Eigen::Matrix<double, kRows, n>, 0, OuterStride<stride * kRows>>(
A.data() + (kCols - 1 - (n - 1) * stride) * kRows, A.rows(), n);
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
VERIFY_IS_EQUAL(slice, block);
}
// Compile time size and increment.
{
auto slice1 = v(seq(last - fix<7>, last - fix<2>));
auto slice2 = v(seqN(last - 7, fix<6>));
VERIFY_IS_EQUAL(slice1, slice2);
VERIFY_IS_EQUAL(int(slice1.SizeAtCompileTime), 6);
VERIFY_IS_EQUAL(int(slice2.SizeAtCompileTime), 6);
auto slice3 = A(all, seq(fix<0>, last, fix<2>));
TEST_SET_BUT_UNUSED_VARIABLE(slice3)
VERIFY_IS_EQUAL(int(slice3.RowsAtCompileTime), kRows);
VERIFY_IS_EQUAL(int(slice3.ColsAtCompileTime), (kCols + 1) / 2);
}
// Reverse order.
{
auto slice = A(all, seq(20, 10, fix<-2>));
auto block = Eigen::Map<Eigen::Matrix<double, kRows, Dynamic>, 0, OuterStride<-2 * kRows>>(
A.data() + 20 * kRows, A.rows(), (20 - 10 + 2) / 2);
VERIFY_IS_EQUAL(slice, block);
}
{
Index n = 10;
auto slice1 = A(seqN(last, n, fix<-1>), all);
auto slice2 = A(lastN(n).reverse(), all);
VERIFY_IS_EQUAL(slice1, slice2);
}
// Array of indices.
{
std::vector<int> ind{4, 2, 5, 5, 3};
auto slice1 = A(all, ind);
for (size_t i = 0; i < ind.size(); ++i) {
VERIFY_IS_EQUAL(slice1.col(i), A.col(ind[i]));
}
auto slice2 = A(all, {4, 2, 5, 5, 3});
VERIFY_IS_EQUAL(slice1, slice2);
Eigen::ArrayXi indarray(5);
indarray << 4, 2, 5, 5, 3;
auto slice3 = A(all, indarray);
VERIFY_IS_EQUAL(slice1, slice3);
}
// Custom index list.
{
struct pad {
Index size() const { return out_size; }
Index operator[](Index i) const { return std::max<Index>(0, i - (out_size - in_size)); }
Index in_size, out_size;
};
auto slice = A(pad{3, 5}, pad{3, 5});
Eigen::MatrixXd B = slice;
VERIFY_IS_EQUAL(B.block(2, 2, 3, 3), A.block(0, 0, 3, 3));
}
}
EIGEN_DECLARE_TEST(indexed_view) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(check_indexed_view());
}
CALL_SUBTEST_1(check_tutorial_examples());
// static checks of some internals:
STATIC_CHECK((internal::is_valid_index_type<int>::value));
STATIC_CHECK((internal::is_valid_index_type<unsigned int>::value));
STATIC_CHECK((internal::is_valid_index_type<short>::value));
STATIC_CHECK((internal::is_valid_index_type<std::ptrdiff_t>::value));
STATIC_CHECK((internal::is_valid_index_type<std::size_t>::value));
STATIC_CHECK((!internal::valid_indexed_view_overload<int, int>::value));
STATIC_CHECK((!internal::valid_indexed_view_overload<int, std::ptrdiff_t>::value));
STATIC_CHECK((!internal::valid_indexed_view_overload<std::ptrdiff_t, int>::value));
STATIC_CHECK((!internal::valid_indexed_view_overload<std::size_t, int>::value));
}