blob: 5db28b8323a9dad3239b9d69b91638efb5a6e1ad [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#include "MovableScalar.h"
#include "SafeScalar.h"
#include <Eigen/Core>
template <typename MatrixType>
void rvalue_copyassign(const MatrixType& m) {
typedef typename internal::traits<MatrixType>::Scalar Scalar;
// create a temporary which we are about to destroy by moving
MatrixType tmp = m;
std::uintptr_t src_address = reinterpret_cast<std::uintptr_t>(tmp.data());
Eigen::internal::set_is_malloc_allowed(false); // moving from an rvalue reference shall never allocate
// move the temporary to n
MatrixType n = std::move(tmp);
std::uintptr_t dst_address = reinterpret_cast<std::uintptr_t>(n.data());
if (MatrixType::RowsAtCompileTime == Dynamic || MatrixType::ColsAtCompileTime == Dynamic) {
// verify that we actually moved the guts
VERIFY_IS_EQUAL(src_address, dst_address);
VERIFY_IS_EQUAL(tmp.size(), 0);
VERIFY_IS_EQUAL(reinterpret_cast<std::uintptr_t>(tmp.data()), std::uintptr_t(0));
}
// verify that the content did not change
Scalar abs_diff = (m - n).array().abs().sum();
VERIFY_IS_EQUAL(abs_diff, Scalar(0));
Eigen::internal::set_is_malloc_allowed(true);
}
template <typename TranspositionsType>
void rvalue_transpositions(Index rows) {
typedef typename TranspositionsType::IndicesType PermutationVectorType;
PermutationVectorType vec;
randomPermutationVector(vec, rows);
TranspositionsType t0(vec);
Eigen::internal::set_is_malloc_allowed(false); // moving from an rvalue reference shall never allocate
std::uintptr_t t0_address = reinterpret_cast<std::uintptr_t>(t0.indices().data());
// Move constructors:
TranspositionsType t1 = std::move(t0);
std::uintptr_t t1_address = reinterpret_cast<std::uintptr_t>(t1.indices().data());
VERIFY_IS_EQUAL(t0_address, t1_address);
// t0 must be de-allocated:
VERIFY_IS_EQUAL(t0.size(), 0);
VERIFY_IS_EQUAL(reinterpret_cast<std::uintptr_t>(t0.indices().data()), std::uintptr_t(0));
// Move assignment:
t0 = std::move(t1);
t0_address = reinterpret_cast<std::uintptr_t>(t0.indices().data());
VERIFY_IS_EQUAL(t0_address, t1_address);
// t1 must be de-allocated:
VERIFY_IS_EQUAL(t1.size(), 0);
VERIFY_IS_EQUAL(reinterpret_cast<std::uintptr_t>(t1.indices().data()), std::uintptr_t(0));
Eigen::internal::set_is_malloc_allowed(true);
}
template <typename MatrixType>
void rvalue_move(const MatrixType& m) {
// lvalue reference is copied
MatrixType b(m);
VERIFY_IS_EQUAL(b, m);
// lvalue reference is copied
MatrixType c{m};
VERIFY_IS_EQUAL(c, m);
// lvalue reference is copied
MatrixType d = m;
VERIFY_IS_EQUAL(d, m);
// rvalue reference is moved - copy constructor.
MatrixType e_src(m);
VERIFY_IS_EQUAL(e_src, m);
MatrixType e_dst(std::move(e_src));
VERIFY_IS_EQUAL(e_dst, m);
// rvalue reference is moved - copy constructor.
MatrixType f_src(m);
VERIFY_IS_EQUAL(f_src, m);
MatrixType f_dst = std::move(f_src);
VERIFY_IS_EQUAL(f_dst, m);
// rvalue reference is moved - copy assignment.
MatrixType g_src(m);
VERIFY_IS_EQUAL(g_src, m);
MatrixType g_dst;
g_dst = std::move(g_src);
VERIFY_IS_EQUAL(g_dst, m);
}
EIGEN_DECLARE_TEST(rvalue_types) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(rvalue_copyassign(MatrixXf::Random(50, 50).eval()));
CALL_SUBTEST_1(rvalue_copyassign(ArrayXXf::Random(50, 50).eval()));
CALL_SUBTEST_1(rvalue_copyassign(Matrix<float, 1, Dynamic>::Random(50).eval()));
CALL_SUBTEST_1(rvalue_copyassign(Array<float, 1, Dynamic>::Random(50).eval()));
CALL_SUBTEST_1(rvalue_copyassign(Matrix<float, Dynamic, 1>::Random(50).eval()));
CALL_SUBTEST_1(rvalue_copyassign(Array<float, Dynamic, 1>::Random(50).eval()));
CALL_SUBTEST_2(rvalue_copyassign(Array<float, 2, 1>::Random().eval()));
CALL_SUBTEST_2(rvalue_copyassign(Array<float, 3, 1>::Random().eval()));
CALL_SUBTEST_2(rvalue_copyassign(Array<float, 4, 1>::Random().eval()));
CALL_SUBTEST_2(rvalue_copyassign(Array<float, 2, 2>::Random().eval()));
CALL_SUBTEST_2(rvalue_copyassign(Array<float, 3, 3>::Random().eval()));
CALL_SUBTEST_2(rvalue_copyassign(Array<float, 4, 4>::Random().eval()));
CALL_SUBTEST_3((rvalue_transpositions<PermutationMatrix<Dynamic, Dynamic, int> >(
internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_3((rvalue_transpositions<PermutationMatrix<Dynamic, Dynamic, Index> >(
internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_4(
(rvalue_transpositions<Transpositions<Dynamic, Dynamic, int> >(internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_4((rvalue_transpositions<Transpositions<Dynamic, Dynamic, Index> >(
internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_5(rvalue_move(Eigen::Matrix<MovableScalar<float>, 1, 3>::Random().eval()));
CALL_SUBTEST_5(rvalue_move(Eigen::Matrix<SafeScalar<float>, 1, 3>::Random().eval()));
CALL_SUBTEST_5(rvalue_move(Eigen::Matrix<SafeScalar<float>, Eigen::Dynamic, Eigen::Dynamic>::Random(1, 3).eval()));
}
}