blob: 199dfff25945254be8f73bf99b0fa5f4449ebd28 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "sparse.h"
template <typename Scalar>
void initSPD(double density, Matrix<Scalar, Dynamic, Dynamic>& refMat, SparseMatrix<Scalar>& sparseMat) {
Matrix<Scalar, Dynamic, Dynamic> aux(refMat.rows(), refMat.cols());
initSparse(density, refMat, sparseMat);
refMat = refMat * refMat.adjoint();
for (int k = 0; k < 2; ++k) {
initSparse(density, aux, sparseMat, ForceNonZeroDiag);
refMat += aux * aux.adjoint();
}
sparseMat.setZero();
for (int j = 0; j < sparseMat.cols(); ++j)
for (int i = j; i < sparseMat.rows(); ++i)
if (refMat(i, j) != Scalar(0)) sparseMat.insert(i, j) = refMat(i, j);
sparseMat.finalize();
}
template <typename Scalar>
void sparse_solvers(int rows, int cols) {
double density = (std::max)(8. / (rows * cols), 0.01);
typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix;
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
// Scalar eps = 1e-6;
DenseVector vec1 = DenseVector::Random(rows);
std::vector<Vector2i> zeroCoords;
std::vector<Vector2i> nonzeroCoords;
// test triangular solver
{
DenseVector vec2 = vec1, vec3 = vec1;
SparseMatrix<Scalar> m2(rows, cols);
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
// lower - dense
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag | MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
VERIFY_IS_APPROX(refMat2.template triangularView<Lower>().solve(vec2),
m2.template triangularView<Lower>().solve(vec3));
// upper - dense
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag | MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
VERIFY_IS_APPROX(refMat2.template triangularView<Upper>().solve(vec2),
m2.template triangularView<Upper>().solve(vec3));
VERIFY_IS_APPROX(refMat2.conjugate().template triangularView<Upper>().solve(vec2),
m2.conjugate().template triangularView<Upper>().solve(vec3));
{
SparseMatrix<Scalar> cm2(m2);
// Index rows, Index cols, Index nnz, Index* outerIndexPtr, Index* innerIndexPtr, Scalar* valuePtr
Map<SparseMatrix<Scalar> > mm2(rows, cols, cm2.nonZeros(), cm2.outerIndexPtr(), cm2.innerIndexPtr(),
cm2.valuePtr());
VERIFY_IS_APPROX(refMat2.conjugate().template triangularView<Upper>().solve(vec2),
mm2.conjugate().template triangularView<Upper>().solve(vec3));
}
// lower - transpose
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag | MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
VERIFY_IS_APPROX(refMat2.transpose().template triangularView<Upper>().solve(vec2),
m2.transpose().template triangularView<Upper>().solve(vec3));
// upper - transpose
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag | MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
VERIFY_IS_APPROX(refMat2.transpose().template triangularView<Lower>().solve(vec2),
m2.transpose().template triangularView<Lower>().solve(vec3));
SparseMatrix<Scalar> matB(rows, rows);
DenseMatrix refMatB = DenseMatrix::Zero(rows, rows);
// lower - sparse
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag | MakeLowerTriangular);
initSparse<Scalar>(density, refMatB, matB);
refMat2.template triangularView<Lower>().solveInPlace(refMatB);
m2.template triangularView<Lower>().solveInPlace(matB);
VERIFY_IS_APPROX(matB.toDense(), refMatB);
// upper - sparse
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag | MakeUpperTriangular);
initSparse<Scalar>(density, refMatB, matB);
refMat2.template triangularView<Upper>().solveInPlace(refMatB);
m2.template triangularView<Upper>().solveInPlace(matB);
VERIFY_IS_APPROX(matB, refMatB);
// test deprecated API
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag | MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
VERIFY_IS_APPROX(refMat2.template triangularView<Lower>().solve(vec2),
m2.template triangularView<Lower>().solve(vec3));
// test empty triangular matrix
{
m2.resize(0, 0);
refMatB.resize(0, refMatB.cols());
DenseMatrix res = m2.template triangularView<Lower>().solve(refMatB);
VERIFY_IS_EQUAL(res.rows(), 0);
VERIFY_IS_EQUAL(res.cols(), refMatB.cols());
res = refMatB;
m2.template triangularView<Lower>().solveInPlace(res);
VERIFY_IS_EQUAL(res.rows(), 0);
VERIFY_IS_EQUAL(res.cols(), refMatB.cols());
}
}
}
EIGEN_DECLARE_TEST(sparse_solvers) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(sparse_solvers<double>(8, 8));
int s = internal::random<int>(1, 300);
CALL_SUBTEST_2(sparse_solvers<std::complex<double> >(s, s));
CALL_SUBTEST_1(sparse_solvers<double>(s, s));
}
}