blob: 0b9ad3dace874836cebd0e1d4f240b6b6434c371 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
#include <memory>
namespace Eigen {
namespace internal {
// FFTW uses non-const arguments
// so we must use ugly const_cast calls for all the args it uses
//
// This should be safe as long as
// 1. we use FFTW_ESTIMATE for all our planning
// see the FFTW docs section 4.3.2 "Planner Flags"
// 2. fftw_complex is compatible with std::complex
// This assumes std::complex<T> layout is array of size 2 with real,imag
template <typename T>
inline T *fftw_cast(const T *p) {
return const_cast<T *>(p);
}
inline fftw_complex *fftw_cast(const std::complex<double> *p) {
return const_cast<fftw_complex *>(reinterpret_cast<const fftw_complex *>(p));
}
inline fftwf_complex *fftw_cast(const std::complex<float> *p) {
return const_cast<fftwf_complex *>(reinterpret_cast<const fftwf_complex *>(p));
}
inline fftwl_complex *fftw_cast(const std::complex<long double> *p) {
return const_cast<fftwl_complex *>(reinterpret_cast<const fftwl_complex *>(p));
}
template <typename T>
struct fftw_plan {};
template <>
struct fftw_plan<float> {
typedef float scalar_type;
typedef fftwf_complex complex_type;
std::shared_ptr<fftwf_plan_s> m_plan;
fftw_plan() = default;
void set_plan(fftwf_plan p) { m_plan.reset(p, fftwf_destroy_plan); }
inline void fwd(complex_type *dst, complex_type *src, int nfft) {
if (m_plan == NULL) set_plan(fftwf_plan_dft_1d(nfft, src, dst, FFTW_FORWARD, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftwf_execute_dft(m_plan.get(), src, dst);
}
inline void inv(complex_type *dst, complex_type *src, int nfft) {
if (m_plan == NULL) set_plan(fftwf_plan_dft_1d(nfft, src, dst, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftwf_execute_dft(m_plan.get(), src, dst);
}
inline void fwd(complex_type *dst, scalar_type *src, int nfft) {
if (m_plan == NULL) set_plan(fftwf_plan_dft_r2c_1d(nfft, src, dst, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftwf_execute_dft_r2c(m_plan.get(), src, dst);
}
inline void inv(scalar_type *dst, complex_type *src, int nfft) {
if (m_plan == NULL) set_plan(fftwf_plan_dft_c2r_1d(nfft, src, dst, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftwf_execute_dft_c2r(m_plan.get(), src, dst);
}
inline void fwd2(complex_type *dst, complex_type *src, int n0, int n1) {
if (m_plan == NULL)
set_plan(fftwf_plan_dft_2d(n0, n1, src, dst, FFTW_FORWARD, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftwf_execute_dft(m_plan.get(), src, dst);
}
inline void inv2(complex_type *dst, complex_type *src, int n0, int n1) {
if (m_plan == NULL)
set_plan(fftwf_plan_dft_2d(n0, n1, src, dst, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftwf_execute_dft(m_plan.get(), src, dst);
}
};
template <>
struct fftw_plan<double> {
typedef double scalar_type;
typedef fftw_complex complex_type;
std::shared_ptr<fftw_plan_s> m_plan;
fftw_plan() = default;
void set_plan(::fftw_plan p) { m_plan.reset(p, fftw_destroy_plan); }
inline void fwd(complex_type *dst, complex_type *src, int nfft) {
if (m_plan == NULL) set_plan(fftw_plan_dft_1d(nfft, src, dst, FFTW_FORWARD, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftw_execute_dft(m_plan.get(), src, dst);
}
inline void inv(complex_type *dst, complex_type *src, int nfft) {
if (m_plan == NULL) set_plan(fftw_plan_dft_1d(nfft, src, dst, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftw_execute_dft(m_plan.get(), src, dst);
}
inline void fwd(complex_type *dst, scalar_type *src, int nfft) {
if (m_plan == NULL) set_plan(fftw_plan_dft_r2c_1d(nfft, src, dst, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftw_execute_dft_r2c(m_plan.get(), src, dst);
}
inline void inv(scalar_type *dst, complex_type *src, int nfft) {
if (m_plan == NULL) set_plan(fftw_plan_dft_c2r_1d(nfft, src, dst, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftw_execute_dft_c2r(m_plan.get(), src, dst);
}
inline void fwd2(complex_type *dst, complex_type *src, int n0, int n1) {
if (m_plan == NULL) set_plan(fftw_plan_dft_2d(n0, n1, src, dst, FFTW_FORWARD, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftw_execute_dft(m_plan.get(), src, dst);
}
inline void inv2(complex_type *dst, complex_type *src, int n0, int n1) {
if (m_plan == NULL)
set_plan(fftw_plan_dft_2d(n0, n1, src, dst, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftw_execute_dft(m_plan.get(), src, dst);
}
};
template <>
struct fftw_plan<long double> {
typedef long double scalar_type;
typedef fftwl_complex complex_type;
std::shared_ptr<fftwl_plan_s> m_plan;
fftw_plan() = default;
void set_plan(fftwl_plan p) { m_plan.reset(p, fftwl_destroy_plan); }
inline void fwd(complex_type *dst, complex_type *src, int nfft) {
if (m_plan == NULL) set_plan(fftwl_plan_dft_1d(nfft, src, dst, FFTW_FORWARD, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftwl_execute_dft(m_plan.get(), src, dst);
}
inline void inv(complex_type *dst, complex_type *src, int nfft) {
if (m_plan == NULL) set_plan(fftwl_plan_dft_1d(nfft, src, dst, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftwl_execute_dft(m_plan.get(), src, dst);
}
inline void fwd(complex_type *dst, scalar_type *src, int nfft) {
if (m_plan == NULL) set_plan(fftwl_plan_dft_r2c_1d(nfft, src, dst, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftwl_execute_dft_r2c(m_plan.get(), src, dst);
}
inline void inv(scalar_type *dst, complex_type *src, int nfft) {
if (m_plan == NULL) set_plan(fftwl_plan_dft_c2r_1d(nfft, src, dst, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftwl_execute_dft_c2r(m_plan.get(), src, dst);
}
inline void fwd2(complex_type *dst, complex_type *src, int n0, int n1) {
if (m_plan == NULL)
set_plan(fftwl_plan_dft_2d(n0, n1, src, dst, FFTW_FORWARD, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftwl_execute_dft(m_plan.get(), src, dst);
}
inline void inv2(complex_type *dst, complex_type *src, int n0, int n1) {
if (m_plan == NULL)
set_plan(fftwl_plan_dft_2d(n0, n1, src, dst, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT));
fftwl_execute_dft(m_plan.get(), src, dst);
}
};
template <typename Scalar_>
struct fftw_impl {
typedef Scalar_ Scalar;
typedef std::complex<Scalar> Complex;
inline void clear() { m_plans.clear(); }
// complex-to-complex forward FFT
inline void fwd(Complex *dst, const Complex *src, int nfft) {
get_plan(nfft, false, dst, src).fwd(fftw_cast(dst), fftw_cast(src), nfft);
}
// real-to-complex forward FFT
inline void fwd(Complex *dst, const Scalar *src, int nfft) {
get_plan(nfft, false, dst, src).fwd(fftw_cast(dst), fftw_cast(src), nfft);
}
// 2-d complex-to-complex
inline void fwd2(Complex *dst, const Complex *src, int n0, int n1) {
get_plan(n0, n1, false, dst, src).fwd2(fftw_cast(dst), fftw_cast(src), n0, n1);
}
// inverse complex-to-complex
inline void inv(Complex *dst, const Complex *src, int nfft) {
get_plan(nfft, true, dst, src).inv(fftw_cast(dst), fftw_cast(src), nfft);
}
// half-complex to scalar
inline void inv(Scalar *dst, const Complex *src, int nfft) {
get_plan(nfft, true, dst, src).inv(fftw_cast(dst), fftw_cast(src), nfft);
}
// 2-d complex-to-complex
inline void inv2(Complex *dst, const Complex *src, int n0, int n1) {
get_plan(n0, n1, true, dst, src).inv2(fftw_cast(dst), fftw_cast(src), n0, n1);
}
protected:
typedef fftw_plan<Scalar> PlanData;
typedef Eigen::numext::int64_t int64_t;
typedef std::map<int64_t, PlanData> PlanMap;
PlanMap m_plans;
inline PlanData &get_plan(int nfft, bool inverse, void *dst, const void *src) {
bool inplace = (dst == src);
bool aligned = ((reinterpret_cast<size_t>(src) & 15) | (reinterpret_cast<size_t>(dst) & 15)) == 0;
int64_t key = ((nfft << 3) | (inverse << 2) | (inplace << 1) | aligned) << 1;
return m_plans[key];
}
inline PlanData &get_plan(int n0, int n1, bool inverse, void *dst, const void *src) {
bool inplace = (dst == src);
bool aligned = ((reinterpret_cast<size_t>(src) & 15) | (reinterpret_cast<size_t>(dst) & 15)) == 0;
int64_t key = (((((int64_t)n0) << 30) | (n1 << 3) | (inverse << 2) | (inplace << 1) | aligned) << 1) + 1;
return m_plans[key];
}
};
} // end namespace internal
} // end namespace Eigen