blob: d37c48fcf5daac45c2ce05992eb4118edf5f8b82 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_REVERSE_H
#define EIGEN_REVERSE_H
namespace Eigen {
/** \class Reverse
* \ingroup Core_Module
*
* \brief Expression of the reverse of a vector or matrix
*
* \param MatrixType the type of the object of which we are taking the reverse
*
* This class represents an expression of the reverse of a vector.
* It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::reverse(), VectorwiseOp::reverse()
*/
namespace internal {
template<typename MatrixType, int Direction>
struct traits<Reverse<MatrixType, Direction> >
: traits<MatrixType>
{
typedef typename MatrixType::Scalar Scalar;
typedef typename traits<MatrixType>::StorageKind StorageKind;
typedef typename traits<MatrixType>::XprKind XprKind;
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
// let's enable LinearAccess only with vectorization because of the product overhead
LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) )
? LinearAccessBit : 0,
Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess),
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
};
};
template<typename PacketScalar, bool ReversePacket> struct reverse_packet_cond
{
static inline PacketScalar run(const PacketScalar& x) { return preverse(x); }
};
template<typename PacketScalar> struct reverse_packet_cond<PacketScalar,false>
{
static inline PacketScalar run(const PacketScalar& x) { return x; }
};
} // end namespace internal
template<typename MatrixType, int Direction> class Reverse
: public internal::dense_xpr_base< Reverse<MatrixType, Direction> >::type
{
public:
typedef typename internal::dense_xpr_base<Reverse>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Reverse)
using Base::IsRowMajor;
// next line is necessary because otherwise const version of operator()
// is hidden by non-const version defined in this file
using Base::operator();
protected:
enum {
PacketSize = internal::packet_traits<Scalar>::size,
IsColMajor = !IsRowMajor,
ReverseRow = (Direction == Vertical) || (Direction == BothDirections),
ReverseCol = (Direction == Horizontal) || (Direction == BothDirections),
OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1,
OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1,
ReversePacket = (Direction == BothDirections)
|| ((Direction == Vertical) && IsColMajor)
|| ((Direction == Horizontal) && IsRowMajor)
};
typedef internal::reverse_packet_cond<PacketScalar,ReversePacket> reverse_packet;
public:
inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { }
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse)
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
inline Index innerStride() const
{
return -m_matrix.innerStride();
}
inline Scalar& operator()(Index row, Index col)
{
eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
return coeffRef(row, col);
}
inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row,
ReverseCol ? m_matrix.cols() - col - 1 : col);
}
inline CoeffReturnType coeff(Index row, Index col) const
{
return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row,
ReverseCol ? m_matrix.cols() - col - 1 : col);
}
inline CoeffReturnType coeff(Index index) const
{
return m_matrix.coeff(m_matrix.size() - index - 1);
}
inline Scalar& coeffRef(Index index)
{
return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1);
}
inline Scalar& operator()(Index index)
{
eigen_assert(index >= 0 && index < m_matrix.size());
return coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return reverse_packet::run(m_matrix.template packet<LoadMode>(
ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
ReverseCol ? m_matrix.cols() - col - OffsetCol : col));
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(
ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
ReverseCol ? m_matrix.cols() - col - OffsetCol : col,
reverse_packet::run(x));
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return internal::preverse(m_matrix.template packet<LoadMode>( m_matrix.size() - index - PacketSize ));
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(m_matrix.size() - index - PacketSize, internal::preverse(x));
}
const typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() const
{
return m_matrix;
}
protected:
typename MatrixType::Nested m_matrix;
};
/** \returns an expression of the reverse of *this.
*
* Example: \include MatrixBase_reverse.cpp
* Output: \verbinclude MatrixBase_reverse.out
*
*/
template<typename Derived>
inline typename DenseBase<Derived>::ReverseReturnType
DenseBase<Derived>::reverse()
{
return derived();
}
/** This is the const version of reverse(). */
template<typename Derived>
inline const typename DenseBase<Derived>::ConstReverseReturnType
DenseBase<Derived>::reverse() const
{
return derived();
}
/** This is the "in place" version of reverse: it reverses \c *this.
*
* In most cases it is probably better to simply use the reversed expression
* of a matrix. However, when reversing the matrix data itself is really needed,
* then this "in-place" version is probably the right choice because it provides
* the following additional features:
* - less error prone: doing the same operation with .reverse() requires special care:
* \code m = m.reverse().eval(); \endcode
* - this API allows to avoid creating a temporary (the current implementation creates a temporary, but that could be avoided using swap)
* - it allows future optimizations (cache friendliness, etc.)
*
* \sa reverse() */
template<typename Derived>
inline void DenseBase<Derived>::reverseInPlace()
{
if(cols()>rows())
{
Index half = cols()/2;
leftCols(half).swap(rightCols(half).reverse());
if((cols()%2)==1)
{
Index half2 = rows()/2;
col(half).head(half2).swap(col(half).tail(half2).reverse());
}
}
else
{
Index half = rows()/2;
topRows(half).swap(bottomRows(half).reverse());
if((rows()%2)==1)
{
Index half2 = cols()/2;
row(half).head(half2).swap(row(half).tail(half2).reverse());
}
}
}
namespace internal {
template<int Direction>
struct vectorwise_reverse_inplace_impl;
template<>
struct vectorwise_reverse_inplace_impl<Vertical>
{
template<typename ExpressionType>
static void run(ExpressionType &xpr)
{
Index half = xpr.rows()/2;
xpr.topRows(half).swap(xpr.bottomRows(half).colwise().reverse());
}
};
template<>
struct vectorwise_reverse_inplace_impl<Horizontal>
{
template<typename ExpressionType>
static void run(ExpressionType &xpr)
{
Index half = xpr.cols()/2;
xpr.leftCols(half).swap(xpr.rightCols(half).rowwise().reverse());
}
};
} // end namespace internal
/** This is the "in place" version of VectorwiseOp::reverse: it reverses each column or row of \c *this.
*
* In most cases it is probably better to simply use the reversed expression
* of a matrix. However, when reversing the matrix data itself is really needed,
* then this "in-place" version is probably the right choice because it provides
* the following additional benefits:
* - less error prone: doing the same operation with .reverse() requires special care:
* \code m = m.reverse().eval(); \endcode
* - this API enables reverse operations without the need for a temporary
*
* \sa DenseBase::reverseInPlace(), reverse() */
template<typename ExpressionType, int Direction>
void VectorwiseOp<ExpressionType,Direction>::reverseInPlace()
{
internal::vectorwise_reverse_inplace_impl<Direction>::run(_expression().const_cast_derived());
}
} // end namespace Eigen
#endif // EIGEN_REVERSE_H