blob: 014c323219420759abb06b2a2b335849c0e4b7ce [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Eric Martin <eric@ericmart.in>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
namespace Eigen {
/** \class TensorContraction
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor contraction class.
*
*
*/
namespace internal {
template<typename Scalar, typename Index>
void pack_simple(Scalar * dst, const Scalar * src, Index cols, Index rows, Index lddst, Index ldsrc) {
size_t psize = packet_traits<Scalar>::size; // Packet size
typedef typename packet_traits<Scalar>::type Packet; // Packet type
size_t alignment = psize*sizeof(Scalar); // Needed alignment
if (rows % psize == 0 && (lddst*sizeof(Scalar)) % alignment == 0 &&
(ldsrc*sizeof(Scalar)) % alignment == 0 &&
reinterpret_cast<uintptr_t>(src) % alignment == 0 &&
reinterpret_cast<uintptr_t>(dst) % alignment == 0) {
// Optimized version using packets
size_t num_packets = rows / psize;
for (Index col = 0; col < cols; ++col) {
EIGEN_ASM_COMMENT("begin pack_simple inner copy");
// Unrolled manually 4 times.
for (size_t i=0; i < num_packets/4; ++i) {
internal::pstore(dst, internal::pload<Packet>(src));
dst += psize; src += psize;
internal::pstore(dst, internal::pload<Packet>(src));
dst += psize; src += psize;
internal::pstore(dst, internal::pload<Packet>(src));
dst += psize; src += psize;
internal::pstore(dst, internal::pload<Packet>(src));
dst += psize; src += psize;
}
for (size_t i=0; i < num_packets%4; ++i) {
internal::pstore(dst, internal::pload<Packet>(src));
dst += psize; src += psize;
}
dst += lddst - num_packets*psize;
src += ldsrc - num_packets*psize;
EIGEN_ASM_COMMENT("end pack_simple inner copy");
}
} else {
// Naive memcpy calls
for (Index col = 0; col < cols; ++col) {
memcpy(dst + col*lddst, src + col*ldsrc, rows*sizeof(Scalar));
}
}
}
#if defined(EIGEN_VECTORIZE_AVX) && defined(EIGEN_USE_LIBXSMM)
// This is a hack needed to be able to compile contraction for Scalar
// unsupported by libxsmm (such as int). While we do not use xsmm in that case,
// the check is performed using if(std::is_same<...>), so compiler runs through
// both branches and then optimizes out unused one, but still would complain.
template<typename LhsScalar, typename RhsScalar, typename Scalar>
struct libxsmm_wrapper {
libxsmm_wrapper() {}
libxsmm_wrapper(int flags, int m, int n, int k, int lda, int ldb, int ldc, float alpha, float beta, int prefetch) {}
void operator()(const LhsScalar* a, const RhsScalar* b, Scalar* c) {}
void operator()(const LhsScalar* a, const RhsScalar* b, Scalar* c, const LhsScalar* ap, const RhsScalar* bp, const Scalar* cp) {}
};
template<>
struct libxsmm_wrapper<float, float, float>: public libxsmm_mmfunction<float> {
libxsmm_wrapper(): libxsmm_mmfunction() {}
libxsmm_wrapper(int flags, int m, int n, int k, int lda, int ldb, int ldc, float alpha, float beta, int prefetch) :
libxsmm_mmfunction(flags, m, n, k, lda, ldb, ldc, alpha, beta, prefetch) {}
};
template<>
struct libxsmm_wrapper<double, double, double>: public libxsmm_mmfunction<double> {
libxsmm_wrapper(): libxsmm_mmfunction() {}
libxsmm_wrapper(int flags, int m, int n, int k, int lda, int ldb, int ldc, float alpha, float beta, int prefetch) :
libxsmm_mmfunction(flags, m, n, k, lda, ldb, ldc, alpha, beta, prefetch) {}
};
#endif
template<typename Dimensions, typename LhsXprType, typename RhsXprType>
struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >
{
// Type promotion to handle the case where the types of the lhs and the rhs are different.
typedef typename scalar_product_traits<typename LhsXprType::Scalar, typename RhsXprType::Scalar>::ReturnType Scalar;
typedef typename scalar_product_traits<typename traits<LhsXprType>::StorageKind,
typename traits<RhsXprType>::StorageKind>::ReturnType StorageKind;
typedef typename promote_index_type<typename traits<LhsXprType>::Index,
typename traits<RhsXprType>::Index>::type Index;
typedef typename LhsXprType::Nested LhsNested;
typedef typename RhsXprType::Nested RhsNested;
typedef typename remove_reference<LhsNested>::type _LhsNested;
typedef typename remove_reference<RhsNested>::type _RhsNested;
// From NumDims below.
static const int NumDimensions = traits<RhsXprType>::NumDimensions + traits<RhsXprType>::NumDimensions - 2 * array_size<Dimensions>::value;
static const int Layout = traits<LhsXprType>::Layout;
enum {
Flags = 0,
};
};
template<typename Dimensions, typename LhsXprType, typename RhsXprType>
struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType>, Eigen::Dense>
{
typedef const TensorContractionOp<Dimensions, LhsXprType, RhsXprType>& type;
};
template<typename Dimensions, typename LhsXprType, typename RhsXprType>
struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >::type>
{
typedef TensorContractionOp<Dimensions, LhsXprType, RhsXprType> type;
};
template<typename Indices_, typename LeftArgType_, typename RightArgType_, typename Device_>
struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_>, Device_> > {
typedef Indices_ Indices;
typedef LeftArgType_ LeftArgType;
typedef RightArgType_ RightArgType;
typedef Device_ Device;
// From NumDims below.
static const int NumDimensions = traits<LeftArgType_>::NumDimensions + traits<RightArgType_>::NumDimensions - 2 * array_size<Indices_>::value;
};
} // end namespace internal
template<typename Indices, typename LhsXprType, typename RhsXprType>
class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType> >
{
public:
typedef typename Eigen::internal::traits<TensorContractionOp>::Scalar Scalar;
typedef typename internal::scalar_product_traits<typename LhsXprType::CoeffReturnType,
typename RhsXprType::CoeffReturnType>::ReturnType CoeffReturnType;
typedef typename Eigen::internal::nested<TensorContractionOp>::type Nested;
typedef typename Eigen::internal::traits<TensorContractionOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorContractionOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionOp(
const LhsXprType& lhs, const RhsXprType& rhs, const Indices& dims)
: m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims) {}
EIGEN_DEVICE_FUNC const Indices& indices() const { return m_indices; }
/** \returns the nested expressions */
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename LhsXprType::Nested>::type&
lhsExpression() const { return m_lhs_xpr; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename RhsXprType::Nested>::type&
rhsExpression() const { return m_rhs_xpr; }
protected:
typename LhsXprType::Nested m_lhs_xpr;
typename RhsXprType::Nested m_rhs_xpr;
const Indices m_indices;
};
template<typename Derived>
struct TensorContractionEvaluatorBase
{
typedef typename internal::traits<Derived>::Indices Indices;
typedef typename internal::traits<Derived>::LeftArgType LeftArgType;
typedef typename internal::traits<Derived>::RightArgType RightArgType;
typedef typename internal::traits<Derived>::Device Device;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
enum {
IsAligned = true,
PacketAccess = (internal::packet_traits<Scalar>::size > 1),
BlockAccess = false,
Layout = TensorEvaluator<LeftArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = true
};
// Most of the code is assuming that both input tensors are ColMajor. If the
// inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
// If we want to compute A * B = C, where A is LHS and B is RHS, the code
// will pretend B is LHS and A is RHS.
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
static const int LDims =
internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
static const int RDims =
internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
static const int ContractDims = internal::array_size<Indices>::value;
static const int NumDims = LDims + RDims - 2 * ContractDims;
typedef array<Index, LDims> left_dim_mapper_t;
typedef array<Index, RDims> right_dim_mapper_t;
typedef array<Index, ContractDims> contract_t;
typedef array<Index, LDims - ContractDims> left_nocontract_t;
typedef array<Index, RDims - ContractDims> right_nocontract_t;
typedef DSizes<Index, NumDims> Dimensions;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
TensorContractionEvaluatorBase(const XprType& op, const Device& device)
: m_leftImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
op.lhsExpression(), op.rhsExpression()), device),
m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
op.rhsExpression(), op.lhsExpression()), device),
m_device(device),
m_result(NULL) {
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) ==
static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)),
YOU_MADE_A_PROGRAMMING_MISTAKE);
DSizes<Index, LDims> eval_left_dims;
DSizes<Index, RDims> eval_right_dims;
array<IndexPair<Index>, ContractDims> eval_op_indices;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
// For ColMajor, we keep using the existing dimensions
for (int i = 0; i < LDims; i++) {
eval_left_dims[i] = m_leftImpl.dimensions()[i];
}
for (int i = 0; i < RDims; i++) {
eval_right_dims[i] = m_rightImpl.dimensions()[i];
}
// We keep the pairs of contracting indices.
for (int i = 0; i < ContractDims; i++) {
eval_op_indices[i].first = op.indices()[i].first;
eval_op_indices[i].second = op.indices()[i].second;
}
} else {
// For RowMajor, we need to reverse the existing dimensions
for (int i = 0; i < LDims; i++) {
eval_left_dims[i] = m_leftImpl.dimensions()[LDims - i - 1];
}
for (int i = 0; i < RDims; i++) {
eval_right_dims[i] = m_rightImpl.dimensions()[RDims - i - 1];
}
// We need to flip all the pairs of contracting indices as well as
// reversing the dimensions.
for (int i = 0; i < ContractDims; i++) {
eval_op_indices[i].first = LDims - 1 - op.indices()[ContractDims - 1 - i].second;
eval_op_indices[i].second = RDims - 1 - op.indices()[ContractDims - 1 - i].first;
}
}
// Check for duplicate axes and make sure the first index in eval_op_indices
// is increasing. Using O(n^2) sorting is OK since ContractDims is at
// most 8.
for (int i = 0; i < ContractDims; i++) {
for (int j = i + 1; j < ContractDims; j++) {
eigen_assert(eval_op_indices[j].first != eval_op_indices[i].first &&
eval_op_indices[j].second != eval_op_indices[i].second &&
"contraction axes should be unique");
if (eval_op_indices[j].first < eval_op_indices[i].first) {
using numext::swap;
swap(eval_op_indices[j], eval_op_indices[i]);
}
}
}
array<Index, LDims> lhs_strides;
if (LDims > 0) {
lhs_strides[0] = 1;
for (int i = 0; i < LDims-1; ++i) {
lhs_strides[i+1] = lhs_strides[i] * eval_left_dims[i];
}
}
array<Index, RDims> rhs_strides;
if (RDims > 0) {
rhs_strides[0] = 1;
for (int i = 0; i < RDims-1; ++i) {
rhs_strides[i+1] = rhs_strides[i] * eval_right_dims[i];
}
}
if (m_i_strides.size() > 0) m_i_strides[0] = 1;
if (m_j_strides.size() > 0) m_j_strides[0] = 1;
if (m_k_strides.size() > 0) m_k_strides[0] = 1;
m_i_size = 1;
m_j_size = 1;
m_k_size = 1;
// To compute the dimension, we simply concatenate the non-contracting
// dimensions of the left and then the right tensor. Additionally, I also
// want to compute the cumulative products of the left non-contracting
// dimensions, right non-contracting dimensions, and the contracting
// dimensions (in the order of the contraction) to aid in the later
// computation of tensor indices for matrix indices.
m_lhs_inner_dim_contiguous = true;
int dim_idx = 0;
int nocontract_idx = 0;
for (int i = 0; i < LDims; i++) {
// find if we are contracting on index i of left tensor
bool contracting = false;
for (int j = 0; j < ContractDims; j++) {
if (eval_op_indices[j].first == i) {
contracting = true;
break;
}
}
if (!contracting) {
// add dimension size to output dimensions
m_dimensions[dim_idx] = eval_left_dims[i];
m_left_nocontract_strides[nocontract_idx] = lhs_strides[i];
if (dim_idx != i) {
m_lhs_inner_dim_contiguous = false;
}
if (nocontract_idx+1 < internal::array_size<left_nocontract_t>::value) {
m_i_strides[nocontract_idx+1] =
m_i_strides[nocontract_idx] * eval_left_dims[i];
} else {
m_i_size = m_i_strides[nocontract_idx] * eval_left_dims[i];
}
dim_idx++;
nocontract_idx++;
}
}
nocontract_idx = 0;
for (int i = 0; i < RDims; i++) {
bool contracting = false;
// find if we are contracting on index i of right tensor
for (int j = 0; j < ContractDims; j++) {
if (eval_op_indices[j].second == i) {
contracting = true;
break;
}
}
if (!contracting) {
m_dimensions[dim_idx] = eval_right_dims[i];
if (nocontract_idx+1 < internal::array_size<right_nocontract_t>::value) {
m_j_strides[nocontract_idx+1] =
m_j_strides[nocontract_idx] * eval_right_dims[i];
} else {
m_j_size = m_j_strides[nocontract_idx] * eval_right_dims[i];
}
m_right_nocontract_strides[nocontract_idx] = rhs_strides[i];
dim_idx++;
nocontract_idx++;
}
}
// now build contraction cumprod. We assumed above that non-contracting axes
// are represented in the same order in the matrix as they are in the tensor.
// This is not the case for contracting axes. As the contracting axes must be
// of the same size in each tensor, I'll only look at the first tensor here.
m_rhs_inner_dim_contiguous = true;
m_rhs_inner_dim_reordered = false;
for (int i = 0; i < ContractDims; i++) {
Index left = eval_op_indices[i].first;
Index right = eval_op_indices[i].second;
Index size = eval_left_dims[left];
eigen_assert(size == eval_right_dims[right] &&
"Contraction axes must be same size");
if (i+1 < internal::array_size<contract_t>::value) {
m_k_strides[i+1] = m_k_strides[i] * size;
} else {
m_k_size = m_k_strides[i] * size;
}
m_left_contracting_strides[i] = lhs_strides[left];
m_right_contracting_strides[i] = rhs_strides[right];
if (i > 0 && right < eval_op_indices[i-1].second) {
m_rhs_inner_dim_reordered = true;
}
if (right != i) {
m_rhs_inner_dim_contiguous = false;
}
}
#if defined(EIGEN_VECTORIZE_AVX) && defined(EIGEN_USE_LIBXSMM)
// Check if we can use faster matmul algorithms. For contraction to be
// equivalent to matmul, we need both lhs and rhs contracting dims sequences
// to be either a prefix or suffix of all dims. Also, the order of both
// must be the same, so we don't have to do reordering.
// For example:
// * OK: lhs 4D, rhs 4D, contraction: [(0, 2), (1, 3)]
// * BAD: lhs 3D, rhs 3D, contraction: [(1,1)]
// * BAD: lhs 3D, rhs 3D, contraction: [(0, 0), (2, 2)]
// * BAD: lhs 3D, rhs 3D, contraction: [(0, 2), (1, 1)]
// Depending if contraction dims are prefix or suffix of all dims we need to
// pre-transpose matrices in matmul algorithm:
// lhs: prefix -> transpose, suffix -> no transpose
// rhs: prefix -> no transpose, suffix -> transpose
// For example, for lhs 2D, rhs 2D, contraction [(1, 0)] is regular,
// non-transposed matmul.
bool equivalent_to_matmul = true;
if (ContractDims == 0) {
// This case is totally uninteresting, filter it out to avoid problems
// with iterations in further tests.
equivalent_to_matmul = false;
}
// Check if RHS dims list is increasing. LHS already is, so if not, the
// order is different and we cannot do matmul.
for (int i = 1; i < ContractDims; i++) {
if (eval_op_indices[i].second < eval_op_indices[i-1].second) {
equivalent_to_matmul = false;
}
}
if (equivalent_to_matmul) {
// Check if no holes.
int diff;
for (int i = 1; i < ContractDims; i++) {
// LHS contract dims are sorted to form an increasing seq.
diff = eval_op_indices[i].first - eval_op_indices[i-1].first;
if (diff != 1) {
equivalent_to_matmul = false;
}
// Now we may already assume RHS contract dims seq is increasing too.
diff = eval_op_indices[i].second - eval_op_indices[i-1].second;
if (diff != 1) {
equivalent_to_matmul = false;
}
}
// Check if suffix or prefix.
if (eval_op_indices[0].first != 0 &&
eval_op_indices[ContractDims-1].first != LDims-1) {
equivalent_to_matmul = false;
}
if (eval_op_indices[0].second != 0 &&
eval_op_indices[ContractDims-1].second != RDims-1) {
equivalent_to_matmul = false;
}
}
typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
m_can_use_xsmm = equivalent_to_matmul &&
std::is_same<Scalar, LhsScalar>::value &&
std::is_same<Scalar, RhsScalar>::value &&
(std::is_same<Scalar, float>::value ||
std::is_same<Scalar, double>::value) &&
m_leftImpl.data() != NULL && m_rightImpl.data() != NULL;
#else
m_can_use_xsmm = false;
#endif
// If the layout is RowMajor, we need to reverse the m_dimensions
if (static_cast<int>(Layout) == static_cast<int>(RowMajor)) {
for (int i = 0, j = NumDims - 1; i < j; i++, j--) {
numext::swap(m_dimensions[i], m_dimensions[j]);
}
}
eigen_assert(ContractDims == 0 || !m_lhs_inner_dim_contiguous ||
(m_left_contracting_strides[0] == m_i_size));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
m_leftImpl.evalSubExprsIfNeeded(NULL);
m_rightImpl.evalSubExprsIfNeeded(NULL);
if (data) {
evalTo(data);
return false;
} else {
m_result = static_cast<Scalar *>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
evalTo(m_result);
return true;
}
}
#define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS) \
if (this->m_lhs_inner_dim_contiguous) { \
if (this->m_rhs_inner_dim_contiguous) { \
if (this->m_rhs_inner_dim_reordered) { \
METHOD<true, true, true, ALIGNMENT>ARGS; \
} \
else { \
METHOD<true, true, false, ALIGNMENT>ARGS; \
} \
} \
else { \
if (this->m_rhs_inner_dim_reordered) { \
METHOD<true, false, true, ALIGNMENT>ARGS; \
} \
else { \
METHOD<true, false, false, ALIGNMENT>ARGS; \
} \
} \
} \
else { \
if (this->m_rhs_inner_dim_contiguous) { \
if (this->m_rhs_inner_dim_reordered) { \
METHOD<false, true, true, ALIGNMENT>ARGS; \
} \
else { \
METHOD<false, true, false, ALIGNMENT>ARGS; \
} \
} \
else { \
if (this->m_rhs_inner_dim_reordered) { \
METHOD<false, false, true, ALIGNMENT>ARGS; \
} \
else { \
METHOD<false, false, false, ALIGNMENT>ARGS; \
} \
} \
}
EIGEN_DEVICE_FUNC void evalTo(Scalar* buffer) const {
static_cast<const Derived*>(this)->template evalProduct<Unaligned>(buffer);
}
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
bool rhs_inner_dim_reordered, int Alignment>
void evalProductSequential(Scalar* buffer) const {
if (this->m_j_size == 1) {
this->template evalGemv<lhs_inner_dim_contiguous,
rhs_inner_dim_contiguous, rhs_inner_dim_reordered,
Alignment>(buffer);
} else {
this->template evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous,
rhs_inner_dim_reordered, Alignment>(buffer);
}
}
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
void evalGemv(Scalar* buffer) const {
const Index rows = m_i_size;
const Index cols = m_k_size;
internal::EigenStatsWrapper::get()->add(internal::MatmulOp{
internal::MatmulOp::Algorithm::GEMV, static_cast<std::size_t>(rows), static_cast<std::size_t>(cols), 1,
!lhs_inner_dim_contiguous, !rhs_inner_dim_contiguous, 1});
typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
const int lhs_packet_size = PacketType<LhsScalar, Device>::size;
const int rhs_packet_size = PacketType<RhsScalar, Device>::size;
const int lhs_alignment = LeftEvaluator::IsAligned ? Aligned : Unaligned;
const int rhs_alignment = RightEvaluator::IsAligned ? Aligned : Unaligned;
typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
LeftEvaluator, left_nocontract_t,
contract_t, lhs_packet_size,
lhs_inner_dim_contiguous,
false, lhs_alignment> LhsMapper;
typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
RightEvaluator, right_nocontract_t,
contract_t, rhs_packet_size,
rhs_inner_dim_contiguous,
rhs_inner_dim_reordered, rhs_alignment> RhsMapper;
LhsMapper lhs(m_leftImpl, m_left_nocontract_strides, m_i_strides,
m_left_contracting_strides, m_k_strides);
RhsMapper rhs(m_rightImpl, m_right_nocontract_strides, m_j_strides,
m_right_contracting_strides, m_k_strides);
const RhsScalar alpha(1);
const Index resIncr(1);
// zero out the result buffer (which must be of size at least rows * sizeof(Scalar)
m_device.memset(buffer, 0, rows * sizeof(Scalar));
internal::general_matrix_vector_product
<Index, LhsScalar, LhsMapper, ColMajor, false,
RhsScalar, RhsMapper, false>::run(
rows, cols, lhs, rhs,
buffer, resIncr, alpha);
}
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
bool rhs_inner_dim_reordered, int Alignment>
EIGEN_DEVICE_FUNC void evalGemm(Scalar* buffer) const {
typedef
typename internal::remove_const<typename EvalLeftArgType::Scalar>::type
LhsScalar;
typedef
typename internal::remove_const<typename EvalRightArgType::Scalar>::type
RhsScalar;
// rows in left side
const Index m = this->m_i_size;
// columns in right side
const Index n = this->m_j_size;
#if defined(EIGEN_VECTORIZE_AVX) && defined(EIGEN_USE_LIBXSMM)
if (m_can_use_xsmm) {
evalGemmPartialXSMM(buffer, 0, this->m_k_size, 1);
return;
}
#endif
// Use more generic Gebp
// zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
this->template evalGemmPartial<lhs_inner_dim_contiguous,
rhs_inner_dim_contiguous,
rhs_inner_dim_reordered, Alignment>(
buffer, 0, this->m_k_size, 1);
}
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
EIGEN_DEVICE_FUNC void evalGemmPartial(Scalar* buffer, Index k_start, Index k_end, int num_threads) const {
// columns in left side, rows in right side
const Index k = this->m_k_size;
eigen_assert(k_end >= k_start && k_start >= 0 && k_end <= k);
const Index k_slice = k_end - k_start;
// rows in left side
const Index m = this->m_i_size;
// columns in right side
const Index n = this->m_j_size;
internal::EigenStatsWrapper::get()->add(internal::MatmulOp{
internal::MatmulOp::Algorithm::GEBP, static_cast<std::size_t>(m), static_cast<std::size_t>(k), static_cast<std::size_t>(n),
!lhs_inner_dim_contiguous, !rhs_inner_dim_contiguous, static_cast<std::size_t>(num_threads)});
// define mr, nr, and all of my data mapper types
typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
const Index nr = Traits::nr;
const Index mr = Traits::mr;
typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
const int lhs_packet_size = internal::packet_traits<LhsScalar>::size;
const int rhs_packet_size = internal::packet_traits<RhsScalar>::size;
typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
LeftEvaluator, left_nocontract_t,
contract_t, lhs_packet_size,
lhs_inner_dim_contiguous,
false, Unaligned> LhsMapper;
typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
RightEvaluator, right_nocontract_t,
contract_t, rhs_packet_size,
rhs_inner_dim_contiguous,
rhs_inner_dim_reordered, Unaligned> RhsMapper;
typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
// declare GEBP packing and kernel structs
// TODO: packing could be faster sometimes if we supported row major tensor mappers
internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, mr, Traits::LhsProgress, ColMajor> pack_lhs;
internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, nr, ColMajor> pack_rhs;
// TODO: replace false, false with conjugate values?
internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper, mr, nr, false, false> gebp;
// initialize data mappers
LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
this->m_left_contracting_strides, this->m_k_strides);
RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
this->m_right_contracting_strides, this->m_k_strides);
OutputMapper output(buffer, m);
// compute block sizes (which depend on number of threads)
internal::TensorContractionBlocking<LhsScalar, RhsScalar, Index,
internal::ShardByCol>
blocking(k_slice, m, n, num_threads);
const Index kc = blocking.kc();
const Index mc = (std::min<Index>)(m, blocking.mc());
const Index nc = (std::min<Index>)(n, blocking.nc());
// sizes of submatrices to live in cache. see Goto paper.
int sizeA = blocking.mc() * kc;
int sizeB = kc * blocking.nc();
// note: m_device.allocate should return 16 byte aligned pointers, but if blockA and blockB
// aren't 16 byte aligned segfaults will happen due to SIMD instructions
LhsScalar* blockA = static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar)));
RhsScalar* blockB = static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar)));
for (Index i2=0; i2<m; i2+=mc)
{
const Index actual_mc = numext::mini(i2+mc,m)-i2;
for (Index k2 = k_start; k2 < k_end; k2 += kc) {
// make sure we don't overshoot right edge of left matrix, then pack vertical panel
const Index actual_kc = numext::mini(k2 + kc, k_end) - k2;
pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc, 0, 0);
// series of horizontal blocks
for (Index j2 = 0; j2 < n; j2 += nc) {
// make sure we don't overshoot right edge of right matrix, then pack block
const Index actual_nc = numext::mini(j2 + nc, n) - j2;
pack_rhs(blockB, rhs.getSubMapper(k2, j2), actual_kc, actual_nc, 0, 0);
// call gebp (matrix kernel)
// The parameters here are copied from Eigen's GEMM implementation
gebp(output.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, Scalar(1), -1, -1, 0, 0);
}
}
}
this->m_device.deallocate(blockA);
this->m_device.deallocate(blockB);
}
#if defined(EIGEN_VECTORIZE_AVX) && defined(EIGEN_USE_LIBXSMM)
EIGEN_DEVICE_FUNC void evalGemmPartialXSMM(Scalar* buffer, Index k_start, Index k_end, int num_threads) const {
const Index k = this->m_k_size;
eigen_assert(k_end >= k_start && k_start >= 0 && k_end <= k);
const Index k_slice = k_end - k_start;
// rows in left side
const Index m = this->m_i_size;
// columns in right side
const Index n = this->m_j_size;
const bool transposeA = !m_lhs_inner_dim_contiguous;
const bool transposeB = !m_rhs_inner_dim_contiguous;
internal::EigenStatsWrapper::get()->add(internal::MatmulOp{
internal::MatmulOp::Algorithm::XSMM, m, k, n, transposeA, transposeB,
num_threads});
typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
internal::TensorXsmmContractionBlocking<LhsScalar, RhsScalar, Index> blocking(
k_end - k_start, m, n, num_threads, transposeA, transposeB);
// Outer blocks sizes
const Index mc_outer = blocking.outer_m();
const Index nc_outer = blocking.outer_n();
const Index kc_outer = blocking.outer_k();
// Inner blocks sizes
const Index mc = blocking.mc();
const Index nc = blocking.nc();
const Index kc = blocking.kc();
// Decisions whether we should copy parts of matrices
const bool copyA = blocking.copyA();
const bool copyB = blocking.copyB();
const LhsScalar * leftData = m_leftImpl.data();
const RhsScalar * rightData = m_rightImpl.data();
libxsmm_blasint stride_A = static_cast<libxsmm_blasint>(transposeA ? k : m);
libxsmm_blasint stride_B = static_cast<libxsmm_blasint>(transposeB ? n : k);
libxsmm_blasint stride_C = static_cast<libxsmm_blasint>(m);
libxsmm_blasint stride_blockA = static_cast<libxsmm_blasint>(mc);
// Use bigger stride to avoid hitting same cache line too often.
// This consistently gives +~0.5 Gflops.
libxsmm_blasint stride_panelB = static_cast<libxsmm_blasint>(
kc % 32 == 0 ? kc + 16 : kc
);
// Kernel for the general case (not edges)
internal::libxsmm_wrapper<LhsScalar, RhsScalar, Scalar> kernel;
const LhsScalar *ap;
const RhsScalar *bp;
const Scalar *cp;
LhsScalar* blockA;
RhsScalar* panelB;
if (copyA) {
blockA = static_cast<LhsScalar*>(this->m_device.allocate(mc * kc * sizeof(LhsScalar)));
}
if (copyB) {
panelB = static_cast<RhsScalar*>(this->m_device.allocate(nc_outer * stride_panelB * sizeof(RhsScalar)));
}
Index kernel_stride_A = copyA ? stride_blockA : stride_A;
Index kernel_stride_B = copyB ? stride_panelB : stride_B;
kernel = internal::libxsmm_wrapper<LhsScalar, RhsScalar, Scalar>(0, mc, nc, kc, kernel_stride_A, kernel_stride_B, stride_C, 1, 1, blocking.prefetch());
// Outer blocking
for (Index ki_outer = k_start; ki_outer < k_end; ki_outer += kc_outer) {
for (Index mi_outer = 0; mi_outer < m; mi_outer += mc_outer) {
for (Index ni_outer = 0; ni_outer < n; ni_outer += nc_outer) {
using numext::mini;
Index actual_nc_outer = mini(ni_outer+nc_outer, n) - ni_outer;
// Inner blocking
for (Index ki = ki_outer; ki < mini(ki_outer+kc_outer, k_end); ki += kc) {
const Index actual_kc = mini(ki_outer+kc_outer, mini(ki+kc, k_end)) - ki;
if (copyB) {
if (transposeB) {
libxsmm_otrans(panelB, rightData + ki*stride_B + ni_outer, sizeof(RhsScalar), actual_nc_outer, actual_kc, stride_B, stride_panelB);
} else {
internal::pack_simple<RhsScalar, Index>(panelB, rightData + ni_outer*stride_B + ki, actual_nc_outer, actual_kc, stride_panelB, stride_B);
}
}
for (Index mi = mi_outer; mi < mini(mi_outer+mc_outer, m); mi += mc) {
const Index actual_mc = mini(mi_outer+mc_outer, mini(mi+mc, m)) - mi;
const LhsScalar * a = transposeA ? leftData + mi*stride_A + ki :
leftData + ki*stride_A + mi;
if (copyA) {
if (transposeA) {
libxsmm_otrans(blockA, a, sizeof(LhsScalar), actual_kc, actual_mc, stride_A, stride_blockA);
} else {
internal::pack_simple<LhsScalar, Index>(blockA, a, actual_kc, actual_mc, stride_blockA, stride_A);
}
}
for (Index ni = ni_outer; ni < mini(ni_outer+nc_outer, n); ni += nc) {
const Index actual_nc = mini(ni_outer+nc_outer, mini(ni+nc, n)) - ni;
const RhsScalar * b = rightData + ni*stride_B + ki;
Scalar * c = buffer + ni*stride_C + mi;
cp = c + nc*stride_C;
const LhsScalar * actual_a = copyA ? blockA : a;
const Index actual_lda = copyA ? stride_blockA : stride_A;
ap = copyA ? blockA : a;
const RhsScalar * actual_b = copyB ? panelB + (ni-ni_outer)*stride_panelB : b;
const Index actual_ldb = copyB ? stride_panelB : stride_B;
bp = copyB ? panelB + nc*stride_panelB : b + nc*stride_B;
float beta = ki == 0 ? 0 : 1;
if (actual_mc == mc && actual_kc == kc && actual_nc == nc && beta == 1) {
// Most used, cached kernel.
kernel(actual_a, actual_b, c, ap, bp, cp);
} else {
// Edges - use libxsmm kernel cache.
internal::libxsmm_wrapper<LhsScalar, RhsScalar, Scalar>(0, actual_mc, actual_nc, actual_kc, actual_lda, actual_ldb, stride_C, 1, beta, blocking.prefetch())(actual_a, actual_b, c, ap, bp, cp);
}
}
}
}
}
}
}
if (copyA) {
this->m_device.deallocate(blockA);
}
if (copyB) {
this->m_device.deallocate(panelB);
}
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_leftImpl.cleanup();
m_rightImpl.cleanup();
if (m_result != NULL) {
m_device.deallocate(m_result);
m_result = NULL;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
return m_result[index];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
}
EIGEN_DEVICE_FUNC Scalar* data() const { return m_result; }
protected:
// Note: nvcc doesn't like implicit copy constructor. If this is needed anywhere,
// then we'll have to write an explicit copy constructor...
//TensorContractionEvaluatorBase(const TensorContractionEvaluatorBase&);
TensorContractionEvaluatorBase& operator = (const TensorContractionEvaluatorBase&);
Dimensions m_dimensions;
contract_t m_k_strides;
contract_t m_left_contracting_strides;
contract_t m_right_contracting_strides;
bool m_lhs_inner_dim_contiguous;
bool m_rhs_inner_dim_contiguous;
bool m_rhs_inner_dim_reordered;
bool m_can_use_xsmm;
left_nocontract_t m_i_strides;
right_nocontract_t m_j_strides;
left_nocontract_t m_left_nocontract_strides;
right_nocontract_t m_right_nocontract_strides;
Index m_i_size;
Index m_j_size;
Index m_k_size;
TensorEvaluator<EvalLeftArgType, Device> m_leftImpl;
TensorEvaluator<EvalRightArgType, Device> m_rightImpl;
const Device& m_device;
Scalar* m_result;
};
// evaluator for default device
template<typename Indices, typename LeftArgType, typename RightArgType, typename Device>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> :
public TensorContractionEvaluatorBase<
TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> > {
typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
typedef TensorContractionEvaluatorBase<Self> Base;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
enum {
Layout = TensorEvaluator<LeftArgType, Device>::Layout,
};
// Most of the code is assuming that both input tensors are ColMajor. If the
// inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
// If we want to compute A * B = C, where A is LHS and B is RHS, the code
// will pretend B is LHS and A is RHS.
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
static const int LDims =
internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
static const int RDims =
internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
static const int ContractDims = internal::array_size<Indices>::value;
typedef array<Index, LDims> left_dim_mapper_t;
typedef array<Index, RDims> right_dim_mapper_t;
typedef array<Index, ContractDims> contract_t;
typedef array<Index, LDims - ContractDims> left_nocontract_t;
typedef array<Index, RDims - ContractDims> right_nocontract_t;
static const int NumDims = LDims + RDims - 2 * ContractDims;
// Could we use NumDimensions here?
typedef DSizes<Index, NumDims> Dimensions;
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
Base(op, device) { }
template <int Alignment>
void evalProduct(Scalar* buffer) const {
TENSOR_CONTRACTION_DISPATCH(this->template evalProductSequential, Alignment, (buffer));
}
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H