blob: 910889efa708ac3d74aae2d63c7a150a7d7723e8 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COREEVALUATORS_H
#define EIGEN_COREEVALUATORS_H
namespace Eigen {
namespace internal {
// This class returns the evaluator kind from the expression storage kind.
// Default assumes index based accessors
template<typename StorageKind>
struct storage_kind_to_evaluator_kind {
typedef IndexBased Kind;
};
// This class returns the evaluator shape from the expression storage kind.
// It can be Dense, Sparse, Triangular, Diagonal, SelfAdjoint, Band, etc.
template<typename StorageKind> struct storage_kind_to_shape;
template<> struct storage_kind_to_shape<Dense> { typedef DenseShape Shape; };
template<> struct storage_kind_to_shape<SolverStorage> { typedef SolverShape Shape; };
template<> struct storage_kind_to_shape<PermutationStorage> { typedef PermutationShape Shape; };
template<> struct storage_kind_to_shape<TranspositionsStorage> { typedef TranspositionsShape Shape; };
// Evaluators have to be specialized with respect to various criteria such as:
// - storage/structure/shape
// - scalar type
// - etc.
// Therefore, we need specialization of evaluator providing additional template arguments for each kind of evaluators.
// We currently distinguish the following kind of evaluators:
// - unary_evaluator for expressions taking only one arguments (CwiseUnaryOp, CwiseUnaryView, Transpose, MatrixWrapper, ArrayWrapper, Reverse, Replicate)
// - binary_evaluator for expression taking two arguments (CwiseBinaryOp)
// - ternary_evaluator for expression taking three arguments (CwiseTernaryOp)
// - product_evaluator for linear algebra products (Product); special case of binary_evaluator because it requires additional tags for dispatching.
// - mapbase_evaluator for Map, Block, Ref
// - block_evaluator for Block (special dispatching to a mapbase_evaluator or unary_evaluator)
template< typename T,
typename Arg1Kind = typename evaluator_traits<typename T::Arg1>::Kind,
typename Arg2Kind = typename evaluator_traits<typename T::Arg2>::Kind,
typename Arg3Kind = typename evaluator_traits<typename T::Arg3>::Kind,
typename Arg1Scalar = typename traits<typename T::Arg1>::Scalar,
typename Arg2Scalar = typename traits<typename T::Arg2>::Scalar,
typename Arg3Scalar = typename traits<typename T::Arg3>::Scalar> struct ternary_evaluator;
template< typename T,
typename LhsKind = typename evaluator_traits<typename T::Lhs>::Kind,
typename RhsKind = typename evaluator_traits<typename T::Rhs>::Kind,
typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
typename RhsScalar = typename traits<typename T::Rhs>::Scalar> struct binary_evaluator;
template< typename T,
typename Kind = typename evaluator_traits<typename T::NestedExpression>::Kind,
typename Scalar = typename T::Scalar> struct unary_evaluator;
// evaluator_traits<T> contains traits for evaluator<T>
template<typename T>
struct evaluator_traits_base
{
// by default, get evaluator kind and shape from storage
typedef typename storage_kind_to_evaluator_kind<typename traits<T>::StorageKind>::Kind Kind;
typedef typename storage_kind_to_shape<typename traits<T>::StorageKind>::Shape Shape;
};
// Default evaluator traits
template<typename T>
struct evaluator_traits : public evaluator_traits_base<T>
{
};
template<typename T, typename Shape = typename evaluator_traits<T>::Shape >
struct evaluator_assume_aliasing {
static const bool value = false;
};
// By default, we assume a unary expression:
template<typename T>
struct evaluator : public unary_evaluator<T>
{
typedef unary_evaluator<T> Base;
EIGEN_DEVICE_FUNC explicit evaluator(const T& xpr) : Base(xpr) {}
};
// TODO: Think about const-correctness
template<typename T>
struct evaluator<const T>
: evaluator<T>
{
EIGEN_DEVICE_FUNC
explicit evaluator(const T& xpr) : evaluator<T>(xpr) {}
};
// ---------- base class for all evaluators ----------
template<typename ExpressionType>
struct evaluator_base : public noncopyable
{
// TODO that's not very nice to have to propagate all these traits. They are currently only needed to handle outer,inner indices.
typedef traits<ExpressionType> ExpressionTraits;
enum {
Alignment = 0
};
};
// -------------------- Matrix and Array --------------------
//
// evaluator<PlainObjectBase> is a common base class for the
// Matrix and Array evaluators.
// Here we directly specialize evaluator. This is not really a unary expression, and it is, by definition, dense,
// so no need for more sophisticated dispatching.
template<typename Derived>
struct evaluator<PlainObjectBase<Derived> >
: evaluator_base<Derived>
{
typedef PlainObjectBase<Derived> PlainObjectType;
typedef typename PlainObjectType::Scalar Scalar;
typedef typename PlainObjectType::CoeffReturnType CoeffReturnType;
enum {
IsRowMajor = PlainObjectType::IsRowMajor,
IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime,
RowsAtCompileTime = PlainObjectType::RowsAtCompileTime,
ColsAtCompileTime = PlainObjectType::ColsAtCompileTime,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
Flags = traits<Derived>::EvaluatorFlags,
Alignment = traits<Derived>::Alignment
};
EIGEN_DEVICE_FUNC evaluator()
: m_data(0),
m_outerStride(IsVectorAtCompileTime ? 0
: int(IsRowMajor) ? ColsAtCompileTime
: RowsAtCompileTime)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
EIGEN_DEVICE_FUNC explicit evaluator(const PlainObjectType& m)
: m_data(m.data()), m_outerStride(IsVectorAtCompileTime ? 0 : m.outerStride())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
if (IsRowMajor)
return m_data[row * m_outerStride.value() + col];
else
return m_data[row + col * m_outerStride.value()];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_data[index];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
if (IsRowMajor)
return const_cast<Scalar*>(m_data)[row * m_outerStride.value() + col];
else
return const_cast<Scalar*>(m_data)[row + col * m_outerStride.value()];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return const_cast<Scalar*>(m_data)[index];
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
if (IsRowMajor)
return ploadt<PacketType, LoadMode>(m_data + row * m_outerStride.value() + col);
else
return ploadt<PacketType, LoadMode>(m_data + row + col * m_outerStride.value());
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return ploadt<PacketType, LoadMode>(m_data + index);
}
template<int StoreMode,typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index row, Index col, const PacketType& x)
{
if (IsRowMajor)
return pstoret<Scalar, PacketType, StoreMode>
(const_cast<Scalar*>(m_data) + row * m_outerStride.value() + col, x);
else
return pstoret<Scalar, PacketType, StoreMode>
(const_cast<Scalar*>(m_data) + row + col * m_outerStride.value(), x);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketType& x)
{
return pstoret<Scalar, PacketType, StoreMode>(const_cast<Scalar*>(m_data) + index, x);
}
protected:
const Scalar *m_data;
// We do not need to know the outer stride for vectors
variable_if_dynamic<Index, IsVectorAtCompileTime ? 0
: int(IsRowMajor) ? ColsAtCompileTime
: RowsAtCompileTime> m_outerStride;
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
struct evaluator<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
: evaluator<PlainObjectBase<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
{
typedef Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType;
EIGEN_DEVICE_FUNC evaluator() {}
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& m)
: evaluator<PlainObjectBase<XprType> >(m)
{ }
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
struct evaluator<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
: evaluator<PlainObjectBase<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
{
typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType;
EIGEN_DEVICE_FUNC evaluator() {}
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& m)
: evaluator<PlainObjectBase<XprType> >(m)
{ }
};
// -------------------- Transpose --------------------
template<typename ArgType>
struct unary_evaluator<Transpose<ArgType>, IndexBased>
: evaluator_base<Transpose<ArgType> >
{
typedef Transpose<ArgType> XprType;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
Flags = evaluator<ArgType>::Flags ^ RowMajorBit,
Alignment = evaluator<ArgType>::Alignment
};
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& t) : m_argImpl(t.nestedExpression()) {}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(col, row);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(col, row);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename XprType::Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(index);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
return m_argImpl.template packet<LoadMode,PacketType>(col, row);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return m_argImpl.template packet<LoadMode,PacketType>(index);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index row, Index col, const PacketType& x)
{
m_argImpl.template writePacket<StoreMode,PacketType>(col, row, x);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketType& x)
{
m_argImpl.template writePacket<StoreMode,PacketType>(index, x);
}
protected:
evaluator<ArgType> m_argImpl;
};
// -------------------- CwiseNullaryOp --------------------
// Like Matrix and Array, this is not really a unary expression, so we directly specialize evaluator.
// Likewise, there is not need to more sophisticated dispatching here.
template<typename Scalar,typename NullaryOp,
bool has_nullary = has_nullary_operator<NullaryOp>::value,
bool has_unary = has_unary_operator<NullaryOp>::value,
bool has_binary = has_binary_operator<NullaryOp>::value>
struct nullary_wrapper
{
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { return op(i,j); }
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); }
template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { return op.template packetOp<T>(i,j); }
template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp<T>(i); }
};
template<typename Scalar,typename NullaryOp>
struct nullary_wrapper<Scalar,NullaryOp,true,false,false>
{
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType=0, IndexType=0) const { return op(); }
template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType=0, IndexType=0) const { return op.template packetOp<T>(); }
};
template<typename Scalar,typename NullaryOp>
struct nullary_wrapper<Scalar,NullaryOp,false,false,true>
{
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j=0) const { return op(i,j); }
template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j=0) const { return op.template packetOp<T>(i,j); }
};
// We need the following specialization for vector-only functors assigned to a runtime vector,
// for instance, using linspace and assigning a RowVectorXd to a MatrixXd or even a row of a MatrixXd.
// In this case, i==0 and j is used for the actual iteration.
template<typename Scalar,typename NullaryOp>
struct nullary_wrapper<Scalar,NullaryOp,false,true,false>
{
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const {
eigen_assert(i==0 || j==0);
return op(i+j);
}
template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const {
eigen_assert(i==0 || j==0);
return op.template packetOp<T>(i+j);
}
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); }
template <typename T, typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp<T>(i); }
};
template<typename Scalar,typename NullaryOp>
struct nullary_wrapper<Scalar,NullaryOp,false,false,false> {};
#if 0 && EIGEN_COMP_MSVC>0
// Disable this ugly workaround. This is now handled in traits<Ref>::match,
// but this piece of code might still become handly if some other weird compilation
// erros pop up again.
// MSVC exhibits a weird compilation error when
// compiling:
// Eigen::MatrixXf A = MatrixXf::Random(3,3);
// Ref<const MatrixXf> R = 2.f*A;
// and that has_*ary_operator<scalar_constant_op<float>> have not been instantiated yet.
// The "problem" is that evaluator<2.f*A> is instantiated by traits<Ref>::match<2.f*A>
// and at that time has_*ary_operator<T> returns true regardless of T.
// Then nullary_wrapper is badly instantiated as nullary_wrapper<.,.,true,true,true>.
// The trick is thus to defer the proper instantiation of nullary_wrapper when coeff(),
// and packet() are really instantiated as implemented below:
// This is a simple wrapper around Index to enforce the re-instantiation of
// has_*ary_operator when needed.
template<typename T> struct nullary_wrapper_workaround_msvc {
nullary_wrapper_workaround_msvc(const T&);
operator T()const;
};
template<typename Scalar,typename NullaryOp>
struct nullary_wrapper<Scalar,NullaryOp,true,true,true>
{
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const {
return nullary_wrapper<Scalar,NullaryOp,
has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().operator()(op,i,j);
}
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const {
return nullary_wrapper<Scalar,NullaryOp,
has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().operator()(op,i);
}
template <typename T, typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const {
return nullary_wrapper<Scalar,NullaryOp,
has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().template packetOp<T>(op,i,j);
}
template <typename T, typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const {
return nullary_wrapper<Scalar,NullaryOp,
has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().template packetOp<T>(op,i);
}
};
#endif // MSVC workaround
template<typename NullaryOp, typename PlainObjectType>
struct evaluator<CwiseNullaryOp<NullaryOp,PlainObjectType> >
: evaluator_base<CwiseNullaryOp<NullaryOp,PlainObjectType> >
{
typedef CwiseNullaryOp<NullaryOp,PlainObjectType> XprType;
typedef typename internal::remove_all<PlainObjectType>::type PlainObjectTypeCleaned;
enum {
CoeffReadCost = internal::functor_traits<NullaryOp>::Cost,
Flags = (evaluator<PlainObjectTypeCleaned>::Flags
& ( HereditaryBits
| (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
| (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
| (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit),
Alignment = AlignedMax
};
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& n)
: m_functor(n.functor()), m_wrapper()
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(IndexType row, IndexType col) const
{
return m_wrapper(m_functor, row, col);
}
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(IndexType index) const
{
return m_wrapper(m_functor,index);
}
template<int LoadMode, typename PacketType, typename IndexType>
EIGEN_STRONG_INLINE
PacketType packet(IndexType row, IndexType col) const
{
return m_wrapper.template packetOp<PacketType>(m_functor, row, col);
}
template<int LoadMode, typename PacketType, typename IndexType>
EIGEN_STRONG_INLINE
PacketType packet(IndexType index) const
{
return m_wrapper.template packetOp<PacketType>(m_functor, index);
}
protected:
const NullaryOp m_functor;
const internal::nullary_wrapper<CoeffReturnType,NullaryOp> m_wrapper;
};
// -------------------- CwiseUnaryOp --------------------
template<typename UnaryOp, typename ArgType>
struct unary_evaluator<CwiseUnaryOp<UnaryOp, ArgType>, IndexBased >
: evaluator_base<CwiseUnaryOp<UnaryOp, ArgType> >
{
typedef CwiseUnaryOp<UnaryOp, ArgType> XprType;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost,
Flags = evaluator<ArgType>::Flags
& (HereditaryBits | LinearAccessBit | (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
Alignment = evaluator<ArgType>::Alignment
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
explicit unary_evaluator(const XprType& op)
: m_functor(op.functor()),
m_argImpl(op.nestedExpression())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<UnaryOp>::Cost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_functor(m_argImpl.coeff(row, col));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_functor(m_argImpl.coeff(index));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
return m_functor.packetOp(m_argImpl.template packet<LoadMode, PacketType>(row, col));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return m_functor.packetOp(m_argImpl.template packet<LoadMode, PacketType>(index));
}
protected:
const UnaryOp m_functor;
evaluator<ArgType> m_argImpl;
};
// -------------------- CwiseTernaryOp --------------------
// this is a ternary expression
template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3>
struct evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >
: public ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >
{
typedef CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> XprType;
typedef ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > Base;
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {}
};
template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3>
struct ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3>, IndexBased, IndexBased>
: evaluator_base<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >
{
typedef CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> XprType;
enum {
CoeffReadCost = evaluator<Arg1>::CoeffReadCost + evaluator<Arg2>::CoeffReadCost + evaluator<Arg3>::CoeffReadCost + functor_traits<TernaryOp>::Cost,
Arg1Flags = evaluator<Arg1>::Flags,
Arg2Flags = evaluator<Arg2>::Flags,
Arg3Flags = evaluator<Arg3>::Flags,
SameType = is_same<typename Arg1::Scalar,typename Arg2::Scalar>::value && is_same<typename Arg1::Scalar,typename Arg3::Scalar>::value,
StorageOrdersAgree = (int(Arg1Flags)&RowMajorBit)==(int(Arg2Flags)&RowMajorBit) && (int(Arg1Flags)&RowMajorBit)==(int(Arg3Flags)&RowMajorBit),
Flags0 = (int(Arg1Flags) | int(Arg2Flags) | int(Arg3Flags)) & (
HereditaryBits
| (int(Arg1Flags) & int(Arg2Flags) & int(Arg3Flags) &
( (StorageOrdersAgree ? LinearAccessBit : 0)
| (functor_traits<TernaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
)
)
),
Flags = (Flags0 & ~RowMajorBit) | (Arg1Flags & RowMajorBit),
Alignment = EIGEN_PLAIN_ENUM_MIN(
EIGEN_PLAIN_ENUM_MIN(evaluator<Arg1>::Alignment, evaluator<Arg2>::Alignment),
evaluator<Arg3>::Alignment)
};
EIGEN_DEVICE_FUNC explicit ternary_evaluator(const XprType& xpr)
: m_functor(xpr.functor()),
m_arg1Impl(xpr.arg1()),
m_arg2Impl(xpr.arg2()),
m_arg3Impl(xpr.arg3())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<TernaryOp>::Cost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_functor(m_arg1Impl.coeff(row, col), m_arg2Impl.coeff(row, col), m_arg3Impl.coeff(row, col));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_functor(m_arg1Impl.coeff(index), m_arg2Impl.coeff(index), m_arg3Impl.coeff(index));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
return m_functor.packetOp(m_arg1Impl.template packet<LoadMode,PacketType>(row, col),
m_arg2Impl.template packet<LoadMode,PacketType>(row, col),
m_arg3Impl.template packet<LoadMode,PacketType>(row, col));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return m_functor.packetOp(m_arg1Impl.template packet<LoadMode,PacketType>(index),
m_arg2Impl.template packet<LoadMode,PacketType>(index),
m_arg3Impl.template packet<LoadMode,PacketType>(index));
}
protected:
const TernaryOp m_functor;
evaluator<Arg1> m_arg1Impl;
evaluator<Arg2> m_arg2Impl;
evaluator<Arg3> m_arg3Impl;
};
// -------------------- CwiseBinaryOp --------------------
// this is a binary expression
template<typename BinaryOp, typename Lhs, typename Rhs>
struct evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
: public binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
typedef binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > Base;
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {}
};
template<typename BinaryOp, typename Lhs, typename Rhs>
struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IndexBased, IndexBased>
: evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
enum {
CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
LhsFlags = evaluator<Lhs>::Flags,
RhsFlags = evaluator<Rhs>::Flags,
SameType = is_same<typename Lhs::Scalar,typename Rhs::Scalar>::value,
StorageOrdersAgree = (int(LhsFlags)&RowMajorBit)==(int(RhsFlags)&RowMajorBit),
Flags0 = (int(LhsFlags) | int(RhsFlags)) & (
HereditaryBits
| (int(LhsFlags) & int(RhsFlags) &
( (StorageOrdersAgree ? LinearAccessBit : 0)
| (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
)
)
),
Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<Lhs>::Alignment,evaluator<Rhs>::Alignment)
};
EIGEN_DEVICE_FUNC explicit binary_evaluator(const XprType& xpr)
: m_functor(xpr.functor()),
m_lhsImpl(xpr.lhs()),
m_rhsImpl(xpr.rhs())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_functor(m_lhsImpl.coeff(row, col), m_rhsImpl.coeff(row, col));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_functor(m_lhsImpl.coeff(index), m_rhsImpl.coeff(index));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
return m_functor.packetOp(m_lhsImpl.template packet<LoadMode,PacketType>(row, col),
m_rhsImpl.template packet<LoadMode,PacketType>(row, col));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return m_functor.packetOp(m_lhsImpl.template packet<LoadMode,PacketType>(index),
m_rhsImpl.template packet<LoadMode,PacketType>(index));
}
protected:
const BinaryOp m_functor;
evaluator<Lhs> m_lhsImpl;
evaluator<Rhs> m_rhsImpl;
};
// -------------------- CwiseUnaryView --------------------
template<typename UnaryOp, typename ArgType>
struct unary_evaluator<CwiseUnaryView<UnaryOp, ArgType>, IndexBased>
: evaluator_base<CwiseUnaryView<UnaryOp, ArgType> >
{
typedef CwiseUnaryView<UnaryOp, ArgType> XprType;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost,
Flags = (evaluator<ArgType>::Flags & (HereditaryBits | LinearAccessBit | DirectAccessBit)),
Alignment = 0 // FIXME it is not very clear why alignment is necessarily lost...
};
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op)
: m_unaryOp(op.functor()),
m_argImpl(op.nestedExpression())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<UnaryOp>::Cost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_unaryOp(m_argImpl.coeff(row, col));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_unaryOp(m_argImpl.coeff(index));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
return m_unaryOp(m_argImpl.coeffRef(row, col));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return m_unaryOp(m_argImpl.coeffRef(index));
}
protected:
const UnaryOp m_unaryOp;
evaluator<ArgType> m_argImpl;
};
// -------------------- Map --------------------
// FIXME perhaps the PlainObjectType could be provided by Derived::PlainObject ?
// but that might complicate template specialization
template<typename Derived, typename PlainObjectType>
struct mapbase_evaluator;
template<typename Derived, typename PlainObjectType>
struct mapbase_evaluator : evaluator_base<Derived>
{
typedef Derived XprType;
typedef typename XprType::PointerType PointerType;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
enum {
IsRowMajor = XprType::RowsAtCompileTime,
ColsAtCompileTime = XprType::ColsAtCompileTime,
CoeffReadCost = NumTraits<Scalar>::ReadCost
};
EIGEN_DEVICE_FUNC explicit mapbase_evaluator(const XprType& map)
: m_data(const_cast<PointerType>(map.data())),
m_innerStride(map.innerStride()),
m_outerStride(map.outerStride())
{
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(evaluator<Derived>::Flags&PacketAccessBit, internal::inner_stride_at_compile_time<Derived>::ret==1),
PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_data[col * colStride() + row * rowStride()];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_data[index * m_innerStride.value()];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
return m_data[col * colStride() + row * rowStride()];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return m_data[index * m_innerStride.value()];
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
PointerType ptr = m_data + row * rowStride() + col * colStride();
return internal::ploadt<PacketType, LoadMode>(ptr);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return internal::ploadt<PacketType, LoadMode>(m_data + index * m_innerStride.value());
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index row, Index col, const PacketType& x)
{
PointerType ptr = m_data + row * rowStride() + col * colStride();
return internal::pstoret<Scalar, PacketType, StoreMode>(ptr, x);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketType& x)
{
internal::pstoret<Scalar, PacketType, StoreMode>(m_data + index * m_innerStride.value(), x);
}
protected:
EIGEN_DEVICE_FUNC
inline Index rowStride() const { return XprType::IsRowMajor ? m_outerStride.value() : m_innerStride.value(); }
EIGEN_DEVICE_FUNC
inline Index colStride() const { return XprType::IsRowMajor ? m_innerStride.value() : m_outerStride.value(); }
PointerType m_data;
const internal::variable_if_dynamic<Index, XprType::InnerStrideAtCompileTime> m_innerStride;
const internal::variable_if_dynamic<Index, XprType::OuterStrideAtCompileTime> m_outerStride;
};
template<typename PlainObjectType, int MapOptions, typename StrideType>
struct evaluator<Map<PlainObjectType, MapOptions, StrideType> >
: public mapbase_evaluator<Map<PlainObjectType, MapOptions, StrideType>, PlainObjectType>
{
typedef Map<PlainObjectType, MapOptions, StrideType> XprType;
typedef typename XprType::Scalar Scalar;
// TODO: should check for smaller packet types once we can handle multi-sized packet types
typedef typename packet_traits<Scalar>::type PacketScalar;
enum {
InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
? int(PlainObjectType::InnerStrideAtCompileTime)
: int(StrideType::InnerStrideAtCompileTime),
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
? int(PlainObjectType::OuterStrideAtCompileTime)
: int(StrideType::OuterStrideAtCompileTime),
HasNoInnerStride = InnerStrideAtCompileTime == 1,
HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0,
HasNoStride = HasNoInnerStride && HasNoOuterStride,
IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic,
PacketAccessMask = bool(HasNoInnerStride) ? ~int(0) : ~int(PacketAccessBit),
LinearAccessMask = bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime) ? ~int(0) : ~int(LinearAccessBit),
Flags = int( evaluator<PlainObjectType>::Flags) & (LinearAccessMask&PacketAccessMask),
Alignment = int(MapOptions)&int(AlignedMask)
};
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& map)
: mapbase_evaluator<XprType, PlainObjectType>(map)
{ }
};
// -------------------- Ref --------------------
template<typename PlainObjectType, int RefOptions, typename StrideType>
struct evaluator<Ref<PlainObjectType, RefOptions, StrideType> >
: public mapbase_evaluator<Ref<PlainObjectType, RefOptions, StrideType>, PlainObjectType>
{
typedef Ref<PlainObjectType, RefOptions, StrideType> XprType;
enum {
Flags = evaluator<Map<PlainObjectType, RefOptions, StrideType> >::Flags,
Alignment = evaluator<Map<PlainObjectType, RefOptions, StrideType> >::Alignment
};
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& ref)
: mapbase_evaluator<XprType, PlainObjectType>(ref)
{ }
};
// -------------------- Block --------------------
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel,
bool HasDirectAccess = internal::has_direct_access<ArgType>::ret> struct block_evaluator;
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
: block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel>
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
typedef typename XprType::Scalar Scalar;
// TODO: should check for smaller packet types once we can handle multi-sized packet types
typedef typename packet_traits<Scalar>::type PacketScalar;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
RowsAtCompileTime = traits<XprType>::RowsAtCompileTime,
ColsAtCompileTime = traits<XprType>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<XprType>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<XprType>::MaxColsAtCompileTime,
ArgTypeIsRowMajor = (int(evaluator<ArgType>::Flags)&RowMajorBit) != 0,
IsRowMajor = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? 1
: (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0
: ArgTypeIsRowMajor,
HasSameStorageOrderAsArgType = (IsRowMajor == ArgTypeIsRowMajor),
InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
InnerStrideAtCompileTime = HasSameStorageOrderAsArgType
? int(inner_stride_at_compile_time<ArgType>::ret)
: int(outer_stride_at_compile_time<ArgType>::ret),
OuterStrideAtCompileTime = HasSameStorageOrderAsArgType
? int(outer_stride_at_compile_time<ArgType>::ret)
: int(inner_stride_at_compile_time<ArgType>::ret),
MaskPacketAccessBit = (InnerStrideAtCompileTime == 1 || HasSameStorageOrderAsArgType) ? PacketAccessBit : 0,
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (evaluator<ArgType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
FlagsRowMajorBit = XprType::Flags&RowMajorBit,
Flags0 = evaluator<ArgType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
DirectAccessBit |
MaskPacketAccessBit),
Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit,
PacketAlignment = unpacket_traits<PacketScalar>::alignment,
Alignment0 = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic)
&& (OuterStrideAtCompileTime!=0)
&& (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % int(PacketAlignment)) == 0)) ? int(PacketAlignment) : 0,
Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ArgType>::Alignment, Alignment0)
};
typedef block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel> block_evaluator_type;
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& block) : block_evaluator_type(block)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
};
// no direct-access => dispatch to a unary evaluator
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAccess*/ false>
: unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
EIGEN_DEVICE_FUNC explicit block_evaluator(const XprType& block)
: unary_evaluator<XprType>(block)
{}
};
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IndexBased>
: evaluator_base<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& block)
: m_argImpl(block.nestedExpression()),
m_startRow(block.startRow()),
m_startCol(block.startCol()),
m_linear_offset(InnerPanel?(XprType::IsRowMajor ? block.startRow()*block.cols() : block.startCol()*block.rows()):0)
{ }
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
enum {
RowsAtCompileTime = XprType::RowsAtCompileTime,
ForwardLinearAccess = InnerPanel && bool(evaluator<ArgType>::Flags&LinearAccessBit)
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(m_startRow.value() + row, m_startCol.value() + col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
if (ForwardLinearAccess)
return m_argImpl.coeff(m_linear_offset.value() + index);
else
return coeff(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(m_startRow.value() + row, m_startCol.value() + col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
if (ForwardLinearAccess)
return m_argImpl.coeffRef(m_linear_offset.value() + index);
else
return coeffRef(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
return m_argImpl.template packet<LoadMode,PacketType>(m_startRow.value() + row, m_startCol.value() + col);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
if (ForwardLinearAccess)
return m_argImpl.template packet<LoadMode,PacketType>(m_linear_offset.value() + index);
else
return packet<LoadMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index,
RowsAtCompileTime == 1 ? index : 0);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index row, Index col, const PacketType& x)
{
return m_argImpl.template writePacket<StoreMode,PacketType>(m_startRow.value() + row, m_startCol.value() + col, x);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketType& x)
{
if (ForwardLinearAccess)
return m_argImpl.template writePacket<StoreMode,PacketType>(m_linear_offset.value() + index, x);
else
return writePacket<StoreMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index,
RowsAtCompileTime == 1 ? index : 0,
x);
}
protected:
evaluator<ArgType> m_argImpl;
const variable_if_dynamic<Index, (ArgType::RowsAtCompileTime == 1 && BlockRows==1) ? 0 : Dynamic> m_startRow;
const variable_if_dynamic<Index, (ArgType::ColsAtCompileTime == 1 && BlockCols==1) ? 0 : Dynamic> m_startCol;
const variable_if_dynamic<Index, InnerPanel ? Dynamic : 0> m_linear_offset;
};
// TODO: This evaluator does not actually use the child evaluator;
// all action is via the data() as returned by the Block expression.
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /* HasDirectAccess */ true>
: mapbase_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>,
typename Block<ArgType, BlockRows, BlockCols, InnerPanel>::PlainObject>
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
typedef typename XprType::Scalar Scalar;
EIGEN_DEVICE_FUNC explicit block_evaluator(const XprType& block)
: mapbase_evaluator<XprType, typename XprType::PlainObject>(block)
{
// TODO: for the 3.3 release, this should be turned to an internal assertion, but let's keep it as is for the beta lifetime
eigen_assert(((internal::UIntPtr(block.data()) % EIGEN_PLAIN_ENUM_MAX(1,evaluator<XprType>::Alignment)) == 0) && "data is not aligned");
}
};
// -------------------- Select --------------------
// NOTE shall we introduce a ternary_evaluator?
// TODO enable vectorization for Select
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
struct evaluator<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
: evaluator_base<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
{
typedef Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> XprType;
enum {
CoeffReadCost = evaluator<ConditionMatrixType>::CoeffReadCost
+ EIGEN_PLAIN_ENUM_MAX(evaluator<ThenMatrixType>::CoeffReadCost,
evaluator<ElseMatrixType>::CoeffReadCost),
Flags = (unsigned int)evaluator<ThenMatrixType>::Flags & evaluator<ElseMatrixType>::Flags & HereditaryBits,
Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ThenMatrixType>::Alignment, evaluator<ElseMatrixType>::Alignment)
};
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& select)
: m_conditionImpl(select.conditionMatrix()),
m_thenImpl(select.thenMatrix()),
m_elseImpl(select.elseMatrix())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
if (m_conditionImpl.coeff(row, col))
return m_thenImpl.coeff(row, col);
else
return m_elseImpl.coeff(row, col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
if (m_conditionImpl.coeff(index))
return m_thenImpl.coeff(index);
else
return m_elseImpl.coeff(index);
}
protected:
evaluator<ConditionMatrixType> m_conditionImpl;
evaluator<ThenMatrixType> m_thenImpl;
evaluator<ElseMatrixType> m_elseImpl;
};
// -------------------- Replicate --------------------
template<typename ArgType, int RowFactor, int ColFactor>
struct unary_evaluator<Replicate<ArgType, RowFactor, ColFactor> >
: evaluator_base<Replicate<ArgType, RowFactor, ColFactor> >
{
typedef Replicate<ArgType, RowFactor, ColFactor> XprType;
typedef typename XprType::CoeffReturnType CoeffReturnType;
enum {
Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor
};
typedef typename internal::nested_eval<ArgType,Factor>::type ArgTypeNested;
typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned;
enum {
CoeffReadCost = evaluator<ArgTypeNestedCleaned>::CoeffReadCost,
LinearAccessMask = XprType::IsVectorAtCompileTime ? LinearAccessBit : 0,
Flags = (evaluator<ArgTypeNestedCleaned>::Flags & (HereditaryBits|LinearAccessMask) & ~RowMajorBit) | (traits<XprType>::Flags & RowMajorBit),
Alignment = evaluator<ArgTypeNestedCleaned>::Alignment
};
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& replicate)
: m_arg(replicate.nestedExpression()),
m_argImpl(m_arg),
m_rows(replicate.nestedExpression().rows()),
m_cols(replicate.nestedExpression().cols())
{}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
// try to avoid using modulo; this is a pure optimization strategy
const Index actual_row = internal::traits<XprType>::RowsAtCompileTime==1 ? 0
: RowFactor==1 ? row
: row % m_rows.value();
const Index actual_col = internal::traits<XprType>::ColsAtCompileTime==1 ? 0
: ColFactor==1 ? col
: col % m_cols.value();
return m_argImpl.coeff(actual_row, actual_col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
// try to avoid using modulo; this is a pure optimization strategy
const Index actual_index = internal::traits<XprType>::RowsAtCompileTime==1
? (ColFactor==1 ? index : index%m_cols.value())
: (RowFactor==1 ? index : index%m_rows.value());
return m_argImpl.coeff(actual_index);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
const Index actual_row = internal::traits<XprType>::RowsAtCompileTime==1 ? 0
: RowFactor==1 ? row
: row % m_rows.value();
const Index actual_col = internal::traits<XprType>::ColsAtCompileTime==1 ? 0
: ColFactor==1 ? col
: col % m_cols.value();
return m_argImpl.template packet<LoadMode,PacketType>(actual_row, actual_col);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
const Index actual_index = internal::traits<XprType>::RowsAtCompileTime==1
? (ColFactor==1 ? index : index%m_cols.value())
: (RowFactor==1 ? index : index%m_rows.value());
return m_argImpl.template packet<LoadMode,PacketType>(actual_index);
}
protected:
const ArgTypeNested m_arg;
evaluator<ArgTypeNestedCleaned> m_argImpl;
const variable_if_dynamic<Index, ArgType::RowsAtCompileTime> m_rows;
const variable_if_dynamic<Index, ArgType::ColsAtCompileTime> m_cols;
};
// -------------------- PartialReduxExpr --------------------
template< typename ArgType, typename MemberOp, int Direction>
struct evaluator<PartialReduxExpr<ArgType, MemberOp, Direction> >
: evaluator_base<PartialReduxExpr<ArgType, MemberOp, Direction> >
{
typedef PartialReduxExpr<ArgType, MemberOp, Direction> XprType;
typedef typename internal::nested_eval<ArgType,1>::type ArgTypeNested;
typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned;
typedef typename ArgType::Scalar InputScalar;
typedef typename XprType::Scalar Scalar;
enum {
TraversalSize = Direction==int(Vertical) ? int(ArgType::RowsAtCompileTime) : int(ArgType::ColsAtCompileTime)
};
typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType;
enum {
CoeffReadCost = TraversalSize==Dynamic ? HugeCost
: TraversalSize * evaluator<ArgType>::CoeffReadCost + int(CostOpType::value),
Flags = (traits<XprType>::Flags&RowMajorBit) | (evaluator<ArgType>::Flags&(HereditaryBits&(~RowMajorBit))) | LinearAccessBit,
Alignment = 0 // FIXME this will need to be improved once PartialReduxExpr is vectorized
};
EIGEN_DEVICE_FUNC explicit evaluator(const XprType xpr)
: m_arg(xpr.nestedExpression()), m_functor(xpr.functor())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(TraversalSize==Dynamic ? HugeCost : int(CostOpType::value));
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Scalar coeff(Index i, Index j) const
{
if (Direction==Vertical)
return m_functor(m_arg.col(j));
else
return m_functor(m_arg.row(i));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Scalar coeff(Index index) const
{
if (Direction==Vertical)
return m_functor(m_arg.col(index));
else
return m_functor(m_arg.row(index));
}
protected:
typename internal::add_const_on_value_type<ArgTypeNested>::type m_arg;
const MemberOp m_functor;
};
// -------------------- MatrixWrapper and ArrayWrapper --------------------
//
// evaluator_wrapper_base<T> is a common base class for the
// MatrixWrapper and ArrayWrapper evaluators.
template<typename XprType>
struct evaluator_wrapper_base
: evaluator_base<XprType>
{
typedef typename remove_all<typename XprType::NestedExpressionType>::type ArgType;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
Flags = evaluator<ArgType>::Flags,
Alignment = evaluator<ArgType>::Alignment
};
EIGEN_DEVICE_FUNC explicit evaluator_wrapper_base(const ArgType& arg) : m_argImpl(arg) {}
typedef typename ArgType::Scalar Scalar;
typedef typename ArgType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(row, col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(row, col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(index);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
return m_argImpl.template packet<LoadMode,PacketType>(row, col);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return m_argImpl.template packet<LoadMode,PacketType>(index);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index row, Index col, const PacketType& x)
{
m_argImpl.template writePacket<StoreMode>(row, col, x);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketType& x)
{
m_argImpl.template writePacket<StoreMode>(index, x);
}
protected:
evaluator<ArgType> m_argImpl;
};
template<typename TArgType>
struct unary_evaluator<MatrixWrapper<TArgType> >
: evaluator_wrapper_base<MatrixWrapper<TArgType> >
{
typedef MatrixWrapper<TArgType> XprType;
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& wrapper)
: evaluator_wrapper_base<MatrixWrapper<TArgType> >(wrapper.nestedExpression())
{ }
};
template<typename TArgType>
struct unary_evaluator<ArrayWrapper<TArgType> >
: evaluator_wrapper_base<ArrayWrapper<TArgType> >
{
typedef ArrayWrapper<TArgType> XprType;
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& wrapper)
: evaluator_wrapper_base<ArrayWrapper<TArgType> >(wrapper.nestedExpression())
{ }
};
// -------------------- Reverse --------------------
// defined in Reverse.h:
template<typename PacketType, bool ReversePacket> struct reverse_packet_cond;
template<typename ArgType, int Direction>
struct unary_evaluator<Reverse<ArgType, Direction> >
: evaluator_base<Reverse<ArgType, Direction> >
{
typedef Reverse<ArgType, Direction> XprType;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
enum {
IsRowMajor = XprType::IsRowMajor,
IsColMajor = !IsRowMajor,
ReverseRow = (Direction == Vertical) || (Direction == BothDirections),
ReverseCol = (Direction == Horizontal) || (Direction == BothDirections),
ReversePacket = (Direction == BothDirections)
|| ((Direction == Vertical) && IsColMajor)
|| ((Direction == Horizontal) && IsRowMajor),
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
// let's enable LinearAccess only with vectorization because of the product overhead
// FIXME enable DirectAccess with negative strides?
Flags0 = evaluator<ArgType>::Flags,
LinearAccess = ( (Direction==BothDirections) && (int(Flags0)&PacketAccessBit) )
|| ((ReverseRow && XprType::ColsAtCompileTime==1) || (ReverseCol && XprType::RowsAtCompileTime==1))
? LinearAccessBit : 0,
Flags = int(Flags0) & (HereditaryBits | PacketAccessBit | LinearAccess),
Alignment = 0 // FIXME in some rare cases, Alignment could be preserved, like a Vector4f.
};
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& reverse)
: m_argImpl(reverse.nestedExpression()),
m_rows(ReverseRow ? reverse.nestedExpression().rows() : 1),
m_cols(ReverseCol ? reverse.nestedExpression().cols() : 1)
{ }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(ReverseRow ? m_rows.value() - row - 1 : row,
ReverseCol ? m_cols.value() - col - 1 : col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(m_rows.value() * m_cols.value() - index - 1);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(ReverseRow ? m_rows.value() - row - 1 : row,
ReverseCol ? m_cols.value() - col - 1 : col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(m_rows.value() * m_cols.value() - index - 1);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
enum {
PacketSize = unpacket_traits<PacketType>::size,
OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1,
OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1
};
typedef internal::reverse_packet_cond<PacketType,ReversePacket> reverse_packet;
return reverse_packet::run(m_argImpl.template packet<LoadMode,PacketType>(
ReverseRow ? m_rows.value() - row - OffsetRow : row,
ReverseCol ? m_cols.value() - col - OffsetCol : col));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
enum { PacketSize = unpacket_traits<PacketType>::size };
return preverse(m_argImpl.template packet<LoadMode,PacketType>(m_rows.value() * m_cols.value() - index - PacketSize));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index row, Index col, const PacketType& x)
{
// FIXME we could factorize some code with packet(i,j)
enum {
PacketSize = unpacket_traits<PacketType>::size,
OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1,
OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1
};
typedef internal::reverse_packet_cond<PacketType,ReversePacket> reverse_packet;
m_argImpl.template writePacket<LoadMode>(
ReverseRow ? m_rows.value() - row - OffsetRow : row,
ReverseCol ? m_cols.value() - col - OffsetCol : col,
reverse_packet::run(x));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketType& x)
{
enum { PacketSize = unpacket_traits<PacketType>::size };
m_argImpl.template writePacket<LoadMode>
(m_rows.value() * m_cols.value() - index - PacketSize, preverse(x));
}
protected:
evaluator<ArgType> m_argImpl;
// If we do not reverse rows, then we do not need to know the number of rows; same for columns
// Nonetheless, in this case it is important to set to 1 such that the coeff(index) method works fine for vectors.
const variable_if_dynamic<Index, ReverseRow ? ArgType::RowsAtCompileTime : 1> m_rows;
const variable_if_dynamic<Index, ReverseCol ? ArgType::ColsAtCompileTime : 1> m_cols;
};
// -------------------- Diagonal --------------------
template<typename ArgType, int DiagIndex>
struct evaluator<Diagonal<ArgType, DiagIndex> >
: evaluator_base<Diagonal<ArgType, DiagIndex> >
{
typedef Diagonal<ArgType, DiagIndex> XprType;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
Flags = (unsigned int)(evaluator<ArgType>::Flags & (HereditaryBits | DirectAccessBit) & ~RowMajorBit) | LinearAccessBit,
Alignment = 0
};
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& diagonal)
: m_argImpl(diagonal.nestedExpression()),
m_index(diagonal.index())
{ }
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index) const
{
return m_argImpl.coeff(row + rowOffset(), row + colOffset());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(index + rowOffset(), index + colOffset());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index)
{
return m_argImpl.coeffRef(row + rowOffset(), row + colOffset());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(index + rowOffset(), index + colOffset());
}
protected:
evaluator<ArgType> m_argImpl;
const internal::variable_if_dynamicindex<Index, XprType::DiagIndex> m_index;
private:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value() > 0 ? 0 : -m_index.value(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value() > 0 ? m_index.value() : 0; }
};
//----------------------------------------------------------------------
// deprecated code
//----------------------------------------------------------------------
// -------------------- EvalToTemp --------------------
// expression class for evaluating nested expression to a temporary
template<typename ArgType> class EvalToTemp;
template<typename ArgType>
struct traits<EvalToTemp<ArgType> >
: public traits<ArgType>
{ };
template<typename ArgType>
class EvalToTemp
: public dense_xpr_base<EvalToTemp<ArgType> >::type
{
public:
typedef typename dense_xpr_base<EvalToTemp>::type Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(EvalToTemp)
explicit EvalToTemp(const ArgType& arg)
: m_arg(arg)
{ }
const ArgType& arg() const
{
return m_arg;
}
Index rows() const
{
return m_arg.rows();
}
Index cols() const
{
return m_arg.cols();
}
private:
const ArgType& m_arg;
};
template<typename ArgType>
struct evaluator<EvalToTemp<ArgType> >
: public evaluator<typename ArgType::PlainObject>
{
typedef EvalToTemp<ArgType> XprType;
typedef typename ArgType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
: m_result(xpr.arg())
{
::new (static_cast<Base*>(this)) Base(m_result);
}
// This constructor is used when nesting an EvalTo evaluator in another evaluator
EIGEN_DEVICE_FUNC evaluator(const ArgType& arg)
: m_result(arg)
{
::new (static_cast<Base*>(this)) Base(m_result);
}
protected:
PlainObject m_result;
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_COREEVALUATORS_H