blob: b249ce0c8b04177ecf2ee3b29529dd44ff3c5ba1 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H
// source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
// TODO this should better be moved to NumTraits
#define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L
namespace Eigen {
// On WINCE, std::abs is defined for int only, so let's defined our own overloads:
// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too.
#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500
long abs(long x) { return (labs(x)); }
double abs(double x) { return (fabs(x)); }
float abs(float x) { return (fabsf(x)); }
long double abs(long double x) { return (fabsl(x)); }
#endif
namespace internal {
/** \internal \class global_math_functions_filtering_base
*
* What it does:
* Defines a typedef 'type' as follows:
* - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
* global_math_functions_filtering_base<T>::type is a typedef for it.
* - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
*
* How it's used:
* To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
* When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
* is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
* So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
* won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
*
* How it's implemented:
* SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
* the typename dummy by an integer template parameter, it doesn't work anymore!
*/
template<typename T, typename dummy = void>
struct global_math_functions_filtering_base
{
typedef T type;
};
template<typename T> struct always_void { typedef void type; };
template<typename T>
struct global_math_functions_filtering_base
<T,
typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
>
{
typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
};
#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type
/****************************************************************************
* Implementation of real *
****************************************************************************/
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct real_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
return x;
}
};
template<typename Scalar>
struct real_default_impl<Scalar,true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
using std::real;
return real(x);
}
};
template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};
#ifdef __CUDA_ARCH__
template<typename T>
struct real_impl<std::complex<T> >
{
typedef T RealScalar;
EIGEN_DEVICE_FUNC
static inline T run(const std::complex<T>& x)
{
return x.real();
}
};
#endif
template<typename Scalar>
struct real_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of imag *
****************************************************************************/
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct imag_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar&)
{
return RealScalar(0);
}
};
template<typename Scalar>
struct imag_default_impl<Scalar,true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
using std::imag;
return imag(x);
}
};
template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};
#ifdef __CUDA_ARCH__
template<typename T>
struct imag_impl<std::complex<T> >
{
typedef T RealScalar;
EIGEN_DEVICE_FUNC
static inline T run(const std::complex<T>& x)
{
return x.imag();
}
};
#endif
template<typename Scalar>
struct imag_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of real_ref *
****************************************************************************/
template<typename Scalar>
struct real_ref_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar& run(Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[0];
}
EIGEN_DEVICE_FUNC
static inline const RealScalar& run(const Scalar& x)
{
return reinterpret_cast<const RealScalar*>(&x)[0];
}
};
template<typename Scalar>
struct real_ref_retval
{
typedef typename NumTraits<Scalar>::Real & type;
};
/****************************************************************************
* Implementation of imag_ref *
****************************************************************************/
template<typename Scalar, bool IsComplex>
struct imag_ref_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar& run(Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[1];
}
EIGEN_DEVICE_FUNC
static inline const RealScalar& run(const Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[1];
}
};
template<typename Scalar>
struct imag_ref_default_impl<Scalar, false>
{
EIGEN_DEVICE_FUNC
static inline Scalar run(Scalar&)
{
return Scalar(0);
}
EIGEN_DEVICE_FUNC
static inline const Scalar run(const Scalar&)
{
return Scalar(0);
}
};
template<typename Scalar>
struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
template<typename Scalar>
struct imag_ref_retval
{
typedef typename NumTraits<Scalar>::Real & type;
};
/****************************************************************************
* Implementation of conj *
****************************************************************************/
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct conj_impl
{
EIGEN_DEVICE_FUNC
static inline Scalar run(const Scalar& x)
{
return x;
}
};
template<typename Scalar>
struct conj_impl<Scalar,true>
{
EIGEN_DEVICE_FUNC
static inline Scalar run(const Scalar& x)
{
using std::conj;
return conj(x);
}
};
template<typename Scalar>
struct conj_retval
{
typedef Scalar type;
};
/****************************************************************************
* Implementation of abs2 *
****************************************************************************/
template<typename Scalar,bool IsComplex>
struct abs2_impl_default
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
return x*x;
}
};
template<typename Scalar>
struct abs2_impl_default<Scalar, true> // IsComplex
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
return real(x)*real(x) + imag(x)*imag(x);
}
};
template<typename Scalar>
struct abs2_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x);
}
};
template<typename Scalar>
struct abs2_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of norm1 *
****************************************************************************/
template<typename Scalar, bool IsComplex>
struct norm1_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
EIGEN_USING_STD_MATH(abs);
return abs(real(x)) + abs(imag(x));
}
};
template<typename Scalar>
struct norm1_default_impl<Scalar, false>
{
EIGEN_DEVICE_FUNC
static inline Scalar run(const Scalar& x)
{
EIGEN_USING_STD_MATH(abs);
return abs(x);
}
};
template<typename Scalar>
struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
template<typename Scalar>
struct norm1_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of hypot *
****************************************************************************/
template<typename Scalar> struct hypot_impl;
template<typename Scalar>
struct hypot_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of cast *
****************************************************************************/
template<typename OldType, typename NewType>
struct cast_impl
{
EIGEN_DEVICE_FUNC
static inline NewType run(const OldType& x)
{
return static_cast<NewType>(x);
}
};
// here, for once, we're plainly returning NewType: we don't want cast to do weird things.
template<typename OldType, typename NewType>
EIGEN_DEVICE_FUNC
inline NewType cast(const OldType& x)
{
return cast_impl<OldType, NewType>::run(x);
}
/****************************************************************************
* Implementation of round *
****************************************************************************/
#if EIGEN_HAS_CXX11_MATH
template<typename Scalar>
struct round_impl {
static inline Scalar run(const Scalar& x)
{
EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
using std::round;
return round(x);
}
};
#else
template<typename Scalar>
struct round_impl
{
static inline Scalar run(const Scalar& x)
{
EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
EIGEN_USING_STD_MATH(floor);
EIGEN_USING_STD_MATH(ceil);
return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5));
}
};
#endif
template<typename Scalar>
struct round_retval
{
typedef Scalar type;
};
/****************************************************************************
* Implementation of arg *
****************************************************************************/
#if EIGEN_HAS_CXX11_MATH
template<typename Scalar>
struct arg_impl {
static inline Scalar run(const Scalar& x)
{
EIGEN_USING_STD_MATH(arg);
return arg(x);
}
};
#else
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct arg_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); }
};
template<typename Scalar>
struct arg_default_impl<Scalar,true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
EIGEN_USING_STD_MATH(arg);
return arg(x);
}
};
template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
#endif
template<typename Scalar>
struct arg_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of log1p *
****************************************************************************/
namespace std_fallback {
// fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar,
// or that there is no suitable std::log1p function available
template<typename Scalar>
EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) {
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_USING_STD_MATH(log);
Scalar x1p = RealScalar(1) + x;
return numext::equal_strict(x1p, Scalar(1)) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) );
}
}
template<typename Scalar>
struct log1p_impl {
static inline Scalar run(const Scalar& x)
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
#if EIGEN_HAS_CXX11_MATH
using std::log1p;
#endif
using std_fallback::log1p;
return log1p(x);
}
};
template<typename Scalar>
struct log1p_retval
{
typedef Scalar type;
};
/****************************************************************************
* Implementation of pow *
****************************************************************************/
template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger>
struct pow_impl
{
//typedef Scalar retval;
typedef typename ScalarBinaryOpTraits<ScalarX,ScalarY,internal::scalar_pow_op<ScalarX,ScalarY> >::ReturnType result_type;
static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y)
{
EIGEN_USING_STD_MATH(pow);
return pow(x, y);
}
};
template<typename ScalarX,typename ScalarY>
struct pow_impl<ScalarX,ScalarY, true>
{
typedef ScalarX result_type;
static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y)
{
ScalarX res(1);
eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0);
if(y & 1) res *= x;
y >>= 1;
while(y)
{
x *= x;
if(y&1) res *= x;
y >>= 1;
}
return res;
}
};
/****************************************************************************
* Implementation of random *
****************************************************************************/
template<typename Scalar,
bool IsComplex,
bool IsInteger>
struct random_default_impl {};
template<typename Scalar>
struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
struct random_retval
{
typedef Scalar type;
};
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
template<typename Scalar>
struct random_default_impl<Scalar, false, false>
{
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
}
static inline Scalar run()
{
return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
}
};
enum {
meta_floor_log2_terminate,
meta_floor_log2_move_up,
meta_floor_log2_move_down,
meta_floor_log2_bogus
};
template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector
{
enum { middle = (lower + upper) / 2,
value = (upper <= lower + 1) ? int(meta_floor_log2_terminate)
: (n < (1 << middle)) ? int(meta_floor_log2_move_down)
: (n==0) ? int(meta_floor_log2_bogus)
: int(meta_floor_log2_move_up)
};
};
template<unsigned int n,
int lower = 0,
int upper = sizeof(unsigned int) * CHAR_BIT - 1,
int selector = meta_floor_log2_selector<n, lower, upper>::value>
struct meta_floor_log2 {};
template<unsigned int n, int lower, int upper>
struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down>
{
enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value };
};
template<unsigned int n, int lower, int upper>
struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up>
{
enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value };
};
template<unsigned int n, int lower, int upper>
struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate>
{
enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
};
template<unsigned int n, int lower, int upper>
struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus>
{
// no value, error at compile time
};
template<typename Scalar>
struct random_default_impl<Scalar, false, true>
{
static inline Scalar run(const Scalar& x, const Scalar& y)
{
if (y <= x)
return x;
// ScalarU is the unsigned counterpart of Scalar, possibly Scalar itself.
typedef typename make_unsigned<Scalar>::type ScalarU;
// ScalarX is the widest of ScalarU and unsigned int.
// We'll deal only with ScalarX and unsigned int below thus avoiding signed
// types and arithmetic and signed overflows (which are undefined behavior).
typedef typename conditional<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned>::type ScalarX;
// The following difference doesn't overflow, provided our integer types are two's
// complement and have the same number of padding bits in signed and unsigned variants.
// This is the case in most modern implementations of C++.
ScalarX range = ScalarX(y) - ScalarX(x);
ScalarX offset = 0;
ScalarX divisor = 1;
ScalarX multiplier = 1;
const unsigned rand_max = RAND_MAX;
if (range <= rand_max) divisor = (rand_max + 1) / (range + 1);
else multiplier = 1 + range / (rand_max + 1);
// Rejection sampling.
do {
offset = (unsigned(std::rand()) * multiplier) / divisor;
} while (offset > range);
return Scalar(ScalarX(x) + offset);
}
static inline Scalar run()
{
#ifdef EIGEN_MAKING_DOCS
return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
#else
enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value,
scalar_bits = sizeof(Scalar) * CHAR_BIT,
shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
};
return Scalar((std::rand() >> shift) - offset);
#endif
}
};
template<typename Scalar>
struct random_default_impl<Scalar, true, false>
{
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return Scalar(random(real(x), real(y)),
random(imag(x), imag(y)));
}
static inline Scalar run()
{
typedef typename NumTraits<Scalar>::Real RealScalar;
return Scalar(random<RealScalar>(), random<RealScalar>());
}
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
{
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
}
// Implementatin of is* functions
// std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang.
#if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG)
#define EIGEN_USE_STD_FPCLASSIFY 1
#else
#define EIGEN_USE_STD_FPCLASSIFY 0
#endif
template<typename T>
EIGEN_DEVICE_FUNC
typename internal::enable_if<internal::is_integral<T>::value,bool>::type
isnan_impl(const T&) { return false; }
template<typename T>
EIGEN_DEVICE_FUNC
typename internal::enable_if<internal::is_integral<T>::value,bool>::type
isinf_impl(const T&) { return false; }
template<typename T>
EIGEN_DEVICE_FUNC
typename internal::enable_if<internal::is_integral<T>::value,bool>::type
isfinite_impl(const T&) { return true; }
template<typename T>
EIGEN_DEVICE_FUNC
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
isfinite_impl(const T& x)
{
#ifdef __CUDA_ARCH__
return (::isfinite)(x);
#elif EIGEN_USE_STD_FPCLASSIFY
using std::isfinite;
return isfinite EIGEN_NOT_A_MACRO (x);
#else
return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest();
#endif
}
template<typename T>
EIGEN_DEVICE_FUNC
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
isinf_impl(const T& x)
{
#ifdef __CUDA_ARCH__
return (::isinf)(x);
#elif EIGEN_USE_STD_FPCLASSIFY
using std::isinf;
return isinf EIGEN_NOT_A_MACRO (x);
#else
return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest();
#endif
}
template<typename T>
EIGEN_DEVICE_FUNC
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
isnan_impl(const T& x)
{
#ifdef __CUDA_ARCH__
return (::isnan)(x);
#elif EIGEN_USE_STD_FPCLASSIFY
using std::isnan;
return isnan EIGEN_NOT_A_MACRO (x);
#else
return x != x;
#endif
}
#if (!EIGEN_USE_STD_FPCLASSIFY)
#if EIGEN_COMP_MSVC
template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x)
{
return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF;
}
//MSVC defines a _isnan builtin function, but for double only
EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; }
EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; }
EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; }
EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); }
EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); }
EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); }
#elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC)
#if EIGEN_GNUC_AT_LEAST(5,0)
#define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only")))
#else
// NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol),
// while the second prevent too aggressive optimizations in fast-math mode:
#define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only")))
#endif
template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); }
template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); }
template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); }
template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); }
template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); }
template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); }
#undef EIGEN_TMP_NOOPT_ATTRIB
#endif
#endif
// The following overload are defined at the end of this file
template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x);
template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x);
template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x);
template<typename T> T generic_fast_tanh_float(const T& a_x);
} // end namespace internal
/****************************************************************************
* Generic math functions *
****************************************************************************/
namespace numext {
#ifndef __CUDA_ARCH__
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
{
EIGEN_USING_STD_MATH(min);
return min EIGEN_NOT_A_MACRO (x,y);
}
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
{
EIGEN_USING_STD_MATH(max);
return max EIGEN_NOT_A_MACRO (x,y);
}
#else
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
{
return y < x ? y : x;
}
template<>
EIGEN_DEVICE_FUNC
EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y)
{
return fminf(x, y);
}
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
{
return x < y ? y : x;
}
template<>
EIGEN_DEVICE_FUNC
EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y)
{
return fmaxf(x, y);
}
#endif
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
{
return internal::real_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
{
return internal::imag_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float log1p(const float &x) { return ::log1pf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double log1p(const double &x) { return ::log1p(x); }
#endif
template<typename ScalarX,typename ScalarY>
EIGEN_DEVICE_FUNC
inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const ScalarX& x, const ScalarY& y)
{
return internal::pow_impl<ScalarX,ScalarY>::run(x, y);
}
template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); }
template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); }
template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); }
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x);
}
template<typename T>
EIGEN_DEVICE_FUNC
T (floor)(const T& x)
{
EIGEN_USING_STD_MATH(floor);
return floor(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float floor(const float &x) { return ::floorf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double floor(const double &x) { return ::floor(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC
T (ceil)(const T& x)
{
EIGEN_USING_STD_MATH(ceil);
return ceil(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float ceil(const float &x) { return ::ceilf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double ceil(const double &x) { return ::ceil(x); }
#endif
/** Log base 2 for 32 bits positive integers.
* Conveniently returns 0 for x==0. */
inline int log2(int x)
{
eigen_assert(x>=0);
unsigned int v(x);
static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return table[(v * 0x07C4ACDDU) >> 27];
}
/** \returns the square root of \a x.
*
* It is essentially equivalent to
* \code using std::sqrt; return sqrt(x); \endcode
* but slightly faster for float/double and some compilers (e.g., gcc), thanks to
* specializations when SSE is enabled.
*
* It's usage is justified in performance critical functions, like norm/normalize.
*/
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T sqrt(const T &x)
{
EIGEN_USING_STD_MATH(sqrt);
return sqrt(x);
}
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T log(const T &x) {
EIGEN_USING_STD_MATH(log);
return log(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float log(const float &x) { return ::logf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double log(const double &x) { return ::log(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type
abs(const T &x) {
EIGEN_USING_STD_MATH(abs);
return abs(x);
}
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type
abs(const T &x) {
return x;
}
#if defined(__SYCL_DEVICE_ONLY__)
EIGEN_ALWAYS_INLINE float abs(float x) { return cl::sycl::fabs(x); }
EIGEN_ALWAYS_INLINE double abs(double x) { return cl::sycl::fabs(x); }
#endif // defined(__SYCL_DEVICE_ONLY__)
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float abs(const float &x) { return ::fabsf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double abs(const double &x) { return ::fabs(x); }
template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float abs(const std::complex<float>& x) {
return ::hypotf(x.real(), x.imag());
}
template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double abs(const std::complex<double>& x) {
return ::hypot(x.real(), x.imag());
}
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T exp(const T &x) {
EIGEN_USING_STD_MATH(exp);
return exp(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float exp(const float &x) { return ::expf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double exp(const double &x) { return ::exp(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T cos(const T &x) {
EIGEN_USING_STD_MATH(cos);
return cos(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float cos(const float &x) { return ::cosf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double cos(const double &x) { return ::cos(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T sin(const T &x) {
EIGEN_USING_STD_MATH(sin);
return sin(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float sin(const float &x) { return ::sinf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double sin(const double &x) { return ::sin(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T tan(const T &x) {
EIGEN_USING_STD_MATH(tan);
return tan(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float tan(const float &x) { return ::tanf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double tan(const double &x) { return ::tan(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T acos(const T &x) {
EIGEN_USING_STD_MATH(acos);
return acos(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float acos(const float &x) { return ::acosf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double acos(const double &x) { return ::acos(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T asin(const T &x) {
EIGEN_USING_STD_MATH(asin);
return asin(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float asin(const float &x) { return ::asinf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double asin(const double &x) { return ::asin(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T atan(const T &x) {
EIGEN_USING_STD_MATH(atan);
return atan(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float atan(const float &x) { return ::atanf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double atan(const double &x) { return ::atan(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T cosh(const T &x) {
EIGEN_USING_STD_MATH(cosh);
return cosh(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float cosh(const float &x) { return ::coshf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double cosh(const double &x) { return ::cosh(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T sinh(const T &x) {
EIGEN_USING_STD_MATH(sinh);
return sinh(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float sinh(const float &x) { return ::sinhf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double sinh(const double &x) { return ::sinh(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T tanh(const T &x) {
EIGEN_USING_STD_MATH(tanh);
return tanh(x);
}
#if (!defined(__CUDACC__)) && EIGEN_FAST_MATH
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float tanh(float x) { return internal::generic_fast_tanh_float(x); }
#endif
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float tanh(const float &x) { return ::tanhf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double tanh(const double &x) { return ::tanh(x); }
#endif
template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T fmod(const T& a, const T& b) {
EIGEN_USING_STD_MATH(fmod);
return fmod(a, b);
}
#ifdef __CUDACC__
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float fmod(const float& a, const float& b) {
return ::fmodf(a, b);
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double fmod(const double& a, const double& b) {
return ::fmod(a, b);
}
#endif
} // end namespace numext
namespace internal {
template<typename T>
EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x)
{
return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x));
}
template<typename T>
EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x)
{
return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x));
}
template<typename T>
EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x)
{
return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x));
}
/****************************************************************************
* Implementation of fuzzy comparisons *
****************************************************************************/
template<typename Scalar,
bool IsComplex,
bool IsInteger>
struct scalar_fuzzy_default_impl {};
template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, false>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename OtherScalar> EIGEN_DEVICE_FUNC
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
{
return numext::abs(x) <= numext::abs(y) * prec;
}
EIGEN_DEVICE_FUNC
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec;
}
EIGEN_DEVICE_FUNC
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
return x <= y || isApprox(x, y, prec);
}
};
template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename OtherScalar> EIGEN_DEVICE_FUNC
static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
{
return x == Scalar(0);
}
EIGEN_DEVICE_FUNC
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
{
return x == y;
}
EIGEN_DEVICE_FUNC
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
{
return x <= y;
}
};
template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, true, false>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename OtherScalar> EIGEN_DEVICE_FUNC
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
{
return numext::abs2(x) <= numext::abs2(y) * prec * prec;
}
EIGEN_DEVICE_FUNC
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec;
}
};
template<typename Scalar>
struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC
inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
}
template<typename Scalar> EIGEN_DEVICE_FUNC
inline bool isApprox(const Scalar& x, const Scalar& y,
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
}
template<typename Scalar> EIGEN_DEVICE_FUNC
inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
}
/******************************************
*** The special case of the bool type ***
******************************************/
template<> struct random_impl<bool>
{
static inline bool run()
{
return random<int>(0,1)==0 ? false : true;
}
};
template<> struct scalar_fuzzy_impl<bool>
{
typedef bool RealScalar;
template<typename OtherScalar> EIGEN_DEVICE_FUNC
static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
{
return !x;
}
EIGEN_DEVICE_FUNC
static inline bool isApprox(bool x, bool y, bool)
{
return x == y;
}
EIGEN_DEVICE_FUNC
static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
{
return (!x) || y;
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATHFUNCTIONS_H