blob: 6440e1d09c74488f80883151b8bbdd74408304f8 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
#define EIGEN_GENERAL_MATRIX_MATRIX_H
namespace Eigen {
namespace internal {
template<typename _LhsScalar, typename _RhsScalar> class level3_blocking;
/* Specialization for a row-major destination matrix => simple transposition of the product */
template<
typename Index,
typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor>
{
typedef gebp_traits<RhsScalar,LhsScalar> Traits;
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static EIGEN_STRONG_INLINE void run(
Index rows, Index cols, Index depth,
const LhsScalar* lhs, Index lhsStride,
const RhsScalar* rhs, Index rhsStride,
ResScalar* res, Index resStride,
ResScalar alpha,
level3_blocking<RhsScalar,LhsScalar>& blocking,
GemmParallelInfo<Index>* info = 0)
{
// transpose the product such that the result is column major
general_matrix_matrix_product<Index,
RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
ColMajor>
::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info);
}
};
/* Specialization for a col-major destination matrix
* => Blocking algorithm following Goto's paper */
template<
typename Index,
typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor>
{
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static void run(Index rows, Index cols, Index depth,
const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsStride,
ResScalar* _res, Index resStride,
ResScalar alpha,
level3_blocking<LhsScalar,RhsScalar>& blocking,
GemmParallelInfo<Index>* info = 0)
{
typedef const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> LhsMapper;
typedef const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> RhsMapper;
typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor> ResMapper;
LhsMapper lhs(_lhs,lhsStride);
RhsMapper rhs(_rhs,rhsStride);
ResMapper res(_res, resStride);
Index kc = blocking.kc(); // cache block size along the K direction
Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
Index nc = (std::min)(cols,blocking.nc()); // cache block size along the N direction
gemm_pack_lhs<LhsScalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
gemm_pack_rhs<RhsScalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs;
gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
#ifdef EIGEN_HAS_OPENMP
if(info)
{
// this is the parallel version!
int tid = omp_get_thread_num();
int threads = omp_get_num_threads();
LhsScalar* blockA = blocking.blockA();
eigen_internal_assert(blockA!=0);
std::size_t sizeB = kc*nc;
ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, 0);
// For each horizontal panel of the rhs, and corresponding vertical panel of the lhs...
for(Index k=0; k<depth; k+=kc)
{
const Index actual_kc = (std::min)(k+kc,depth)-k; // => rows of B', and cols of the A'
// In order to reduce the chance that a thread has to wait for the other,
// let's start by packing B'.
pack_rhs(blockB, rhs.getSubMapper(k,0), actual_kc, nc);
// Pack A_k to A' in a parallel fashion:
// each thread packs the sub block A_k,i to A'_i where i is the thread id.
// However, before copying to A'_i, we have to make sure that no other thread is still using it,
// i.e., we test that info[tid].users equals 0.
// Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it.
while(info[tid].users!=0) {}
info[tid].users += threads;
pack_lhs(blockA+info[tid].lhs_start*actual_kc, lhs.getSubMapper(info[tid].lhs_start,k), actual_kc, info[tid].lhs_length);
// Notify the other threads that the part A'_i is ready to go.
info[tid].sync = k;
// Computes C_i += A' * B' per A'_i
for(int shift=0; shift<threads; ++shift)
{
int i = (tid+shift)%threads;
// At this point we have to make sure that A'_i has been updated by the thread i,
// we use testAndSetOrdered to mimic a volatile access.
// However, no need to wait for the B' part which has been updated by the current thread!
if (shift>0) {
while(info[i].sync!=k) {
}
}
gebp(res.getSubMapper(info[i].lhs_start, 0), blockA+info[i].lhs_start*actual_kc, blockB, info[i].lhs_length, actual_kc, nc, alpha);
}
// Then keep going as usual with the remaining B'
for(Index j=nc; j<cols; j+=nc)
{
const Index actual_nc = (std::min)(j+nc,cols)-j;
// pack B_k,j to B'
pack_rhs(blockB, rhs.getSubMapper(k,j), actual_kc, actual_nc);
// C_j += A' * B'
gebp(res.getSubMapper(0, j), blockA, blockB, rows, actual_kc, actual_nc, alpha);
}
// Release all the sub blocks A'_i of A' for the current thread,
// i.e., we simply decrement the number of users by 1
for(Index i=0; i<threads; ++i)
#pragma omp atomic
info[i].users -= 1;
}
}
else
#endif // EIGEN_HAS_OPENMP
{
EIGEN_UNUSED_VARIABLE(info);
// this is the sequential version!
std::size_t sizeA = kc*mc;
std::size_t sizeB = kc*nc;
ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
const bool pack_rhs_once = mc!=rows && kc==depth && nc==cols;
// For each horizontal panel of the rhs, and corresponding panel of the lhs...
for(Index i2=0; i2<rows; i2+=mc)
{
const Index actual_mc = (std::min)(i2+mc,rows)-i2;
for(Index k2=0; k2<depth; k2+=kc)
{
const Index actual_kc = (std::min)(k2+kc,depth)-k2;
// OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs.
// => Pack lhs's panel into a sequential chunk of memory (L2/L3 caching)
// Note that this panel will be read as many times as the number of blocks in the rhs's
// horizontal panel which is, in practice, a very low number.
pack_lhs(blockA, lhs.getSubMapper(i2,k2), actual_kc, actual_mc);
// For each kc x nc block of the rhs's horizontal panel...
for(Index j2=0; j2<cols; j2+=nc)
{
const Index actual_nc = (std::min)(j2+nc,cols)-j2;
// We pack the rhs's block into a sequential chunk of memory (L2 caching)
// Note that this block will be read a very high number of times, which is equal to the number of
// micro horizontal panel of the large rhs's panel (e.g., rows/12 times).
if((!pack_rhs_once) || i2==0)
pack_rhs(blockB, rhs.getSubMapper(k2,j2), actual_kc, actual_nc);
// Everything is packed, we can now call the panel * block kernel:
gebp(res.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, alpha);
}
}
}
}
}
};
/*********************************************************************************
* Specialization of generic_product_impl for "large" GEMM, i.e.,
* implementation of the high level wrapper to general_matrix_matrix_product
**********************************************************************************/
template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType>
struct gemm_functor
{
gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, const Scalar& actualAlpha, BlockingType& blocking)
: m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
{}
void initParallelSession(Index num_threads) const
{
m_blocking.initParallel(m_lhs.rows(), m_rhs.cols(), m_lhs.cols(), num_threads);
m_blocking.allocateA();
}
void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const
{
if(cols==-1)
cols = m_rhs.cols();
Gemm::run(rows, cols, m_lhs.cols(),
&m_lhs.coeffRef(row,0), m_lhs.outerStride(),
&m_rhs.coeffRef(0,col), m_rhs.outerStride(),
(Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
m_actualAlpha, m_blocking, info);
}
typedef typename Gemm::Traits Traits;
protected:
const Lhs& m_lhs;
const Rhs& m_rhs;
Dest& m_dest;
Scalar m_actualAlpha;
BlockingType& m_blocking;
};
template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor=1,
bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space;
template<typename _LhsScalar, typename _RhsScalar>
class level3_blocking
{
typedef _LhsScalar LhsScalar;
typedef _RhsScalar RhsScalar;
protected:
LhsScalar* m_blockA;
RhsScalar* m_blockB;
Index m_mc;
Index m_nc;
Index m_kc;
public:
level3_blocking()
: m_blockA(0), m_blockB(0), m_mc(0), m_nc(0), m_kc(0)
{}
inline Index mc() const { return m_mc; }
inline Index nc() const { return m_nc; }
inline Index kc() const { return m_kc; }
inline LhsScalar* blockA() { return m_blockA; }
inline RhsScalar* blockB() { return m_blockB; }
};
template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, true /* == FiniteAtCompileTime */>
: public level3_blocking<
typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
{
enum {
Transpose = StorageOrder==RowMajor,
ActualRows = Transpose ? MaxCols : MaxRows,
ActualCols = Transpose ? MaxRows : MaxCols
};
typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
enum {
SizeA = ActualRows * MaxDepth,
SizeB = ActualCols * MaxDepth
};
#if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES
EIGEN_ALIGN_MAX LhsScalar m_staticA[SizeA];
EIGEN_ALIGN_MAX RhsScalar m_staticB[SizeB];
#else
EIGEN_ALIGN_MAX char m_staticA[SizeA * sizeof(LhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1];
EIGEN_ALIGN_MAX char m_staticB[SizeB * sizeof(RhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1];
#endif
public:
gemm_blocking_space(Index /*rows*/, Index /*cols*/, Index /*depth*/, Index /*num_threads*/, bool /*full_rows = false*/)
{
this->m_mc = ActualRows;
this->m_nc = ActualCols;
this->m_kc = MaxDepth;
#if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES
this->m_blockA = m_staticA;
this->m_blockB = m_staticB;
#else
this->m_blockA = reinterpret_cast<LhsScalar*>((internal::UIntPtr(m_staticA) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1));
this->m_blockB = reinterpret_cast<RhsScalar*>((internal::UIntPtr(m_staticB) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1));
#endif
}
void initParallel(Index, Index, Index, Index)
{}
inline void allocateA() {}
inline void allocateB() {}
inline void allocateAll() {}
};
template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, false>
: public level3_blocking<
typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
{
enum {
Transpose = StorageOrder==RowMajor
};
typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
Index m_sizeA;
Index m_sizeB;
public:
gemm_blocking_space(Index rows, Index cols, Index depth, Index num_threads, bool l3_blocking)
{
this->m_mc = Transpose ? cols : rows;
this->m_nc = Transpose ? rows : cols;
this->m_kc = depth;
if(l3_blocking)
{
computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc, num_threads);
}
else // no l3 blocking
{
Index n = this->m_nc;
computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, n, num_threads);
}
m_sizeA = this->m_mc * this->m_kc;
m_sizeB = this->m_kc * this->m_nc;
}
void initParallel(Index rows, Index cols, Index depth, Index num_threads)
{
this->m_mc = Transpose ? cols : rows;
this->m_nc = Transpose ? rows : cols;
this->m_kc = depth;
eigen_internal_assert(this->m_blockA==0 && this->m_blockB==0);
Index m = this->m_mc;
computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, m, this->m_nc, num_threads);
m_sizeA = this->m_mc * this->m_kc;
m_sizeB = this->m_kc * this->m_nc;
}
void allocateA()
{
if(this->m_blockA==0)
this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
}
void allocateB()
{
if(this->m_blockB==0)
this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
}
void allocateAll()
{
allocateA();
allocateB();
}
~gemm_blocking_space()
{
aligned_delete(this->m_blockA, m_sizeA);
aligned_delete(this->m_blockB, m_sizeB);
}
};
} // end namespace internal
namespace internal {
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef internal::blas_traits<Lhs> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned;
typedef internal::blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
enum {
MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
};
typedef generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> lazyproduct;
template<typename Dst>
static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
lazyproduct::evalTo(dst, lhs, rhs);
else
{
dst.setZero();
scaleAndAddTo(dst, lhs, rhs, Scalar(1));
}
}
template<typename Dst>
static void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
lazyproduct::addTo(dst, lhs, rhs);
else
scaleAndAddTo(dst,lhs, rhs, Scalar(1));
}
template<typename Dst>
static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
lazyproduct::subTo(dst, lhs, rhs);
else
scaleAndAddTo(dst, lhs, rhs, Scalar(-1));
}
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& a_lhs, const Rhs& a_rhs, const Scalar& alpha)
{
eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols());
if(a_lhs.cols()==0 || a_lhs.rows()==0 || a_rhs.cols()==0)
return;
typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
* RhsBlasTraits::extractScalarFactor(a_rhs);
typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
typedef internal::gemm_functor<
Scalar, Index,
internal::general_matrix_matrix_product<
Index,
LhsScalar, (ActualLhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
RhsScalar, (ActualRhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
ActualLhsTypeCleaned, ActualRhsTypeCleaned, Dest, BlockingType> GemmFunctor;
BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, true);
internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>
(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&RowMajorBit);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_GENERAL_MATRIX_MATRIX_H