blob: 9b2cb3ff6bcbf9b1dc55b9ee90dcd77e1f689a64 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H
namespace Eigen {
namespace internal {
enum {
Rhs = 0,
Lhs = 1
};
/*
* Implementation of the Eigen blas_data_mapper class for tensors.
*/
template <typename Tensor, bool HasRawAccess> struct CoeffLoader {
enum {
DirectOffsets = false
};
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffLoader(const Tensor& tensor) : m_tensor(tensor) { }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index) {
eigen_assert(false && "unsupported");
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return m_tensor.coeff(index); }
template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename Tensor::PacketReturnType packet(typename Tensor::Index index) const
{
return m_tensor.template packet<LoadMode>(index);
}
private:
const Tensor m_tensor;
};
template <typename Tensor> struct CoeffLoader<Tensor, true> {
enum {
DirectOffsets = true
};
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffLoader(const Tensor& tensor) : m_data(tensor.data()) {}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index offset) {
m_data += offset;
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return loadConstant(m_data+index); }
template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename Tensor::PacketReturnType packet(typename Tensor::Index index) const
{
return internal::ploadt_ro<typename Tensor::PacketReturnType, LoadMode>(m_data + index);
}
private:
typedef typename Tensor::Scalar Scalar;
const Scalar* m_data;
};
template<typename Scalar, typename Index, int side,
typename Tensor,
typename nocontract_t, typename contract_t,
int packet_size, bool inner_dim_contiguous, int Alignment>
class SimpleTensorContractionMapper {
public:
EIGEN_DEVICE_FUNC
SimpleTensorContractionMapper(const Tensor& tensor,
const nocontract_t& nocontract_strides,
const nocontract_t& ij_strides,
const contract_t& contract_strides,
const contract_t& k_strides) :
m_tensor(tensor),
m_nocontract_strides(nocontract_strides),
m_ij_strides(ij_strides),
m_contract_strides(contract_strides),
m_k_strides(k_strides) { }
enum {
DirectOffsets = CoeffLoader<Tensor, Tensor::RawAccess>::DirectOffsets
};
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index offset) {
m_tensor.offsetBuffer(offset);
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void prefetch(Index /*i*/) { }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar operator()(Index row) const {
// column major assumption
return operator()(row, 0);
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar operator()(Index row, Index col) const {
return m_tensor.coeff(computeIndex(row, col));
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index computeIndex(Index row, Index col) const {
const bool left = (side == Lhs);
Index nocontract_val = left ? row : col;
Index linidx = 0;
for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
const Index idx = nocontract_val / m_ij_strides[i];
linidx += idx * m_nocontract_strides[i];
nocontract_val -= idx * m_ij_strides[i];
}
if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) {
if (side == Lhs && inner_dim_contiguous) {
eigen_assert(m_nocontract_strides[0] == 1);
linidx += nocontract_val;
} else {
linidx += nocontract_val * m_nocontract_strides[0];
}
}
Index contract_val = left ? col : row;
if(array_size<contract_t>::value > 0) {
for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
const Index idx = contract_val / m_k_strides[i];
linidx += idx * m_contract_strides[i];
contract_val -= idx * m_k_strides[i];
}
if (side == Rhs && inner_dim_contiguous) {
eigen_assert(m_contract_strides[0] == 1);
linidx += contract_val;
} else {
linidx += contract_val * m_contract_strides[0];
}
}
return linidx;
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE IndexPair<Index> computeIndexPair(Index row, Index col, const Index distance) const {
const bool left = (side == Lhs);
Index nocontract_val[2] = {left ? row : col, left ? row + distance : col};
Index linidx[2] = {0, 0};
if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) {
for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
const Index idx0 = nocontract_val[0] / m_ij_strides[i];
const Index idx1 = nocontract_val[1] / m_ij_strides[i];
linidx[0] += idx0 * m_nocontract_strides[i];
linidx[1] += idx1 * m_nocontract_strides[i];
nocontract_val[0] -= idx0 * m_ij_strides[i];
nocontract_val[1] -= idx1 * m_ij_strides[i];
}
if (side == Lhs && inner_dim_contiguous) {
eigen_assert(m_nocontract_strides[0] == 1);
linidx[0] += nocontract_val[0];
linidx[1] += nocontract_val[1];
} else {
linidx[0] += nocontract_val[0] * m_nocontract_strides[0];
linidx[1] += nocontract_val[1] * m_nocontract_strides[0];
}
}
Index contract_val[2] = {left ? col : row, left ? col : row + distance};
if (array_size<contract_t>::value> 0) {
for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
const Index idx0 = contract_val[0] / m_k_strides[i];
const Index idx1 = contract_val[1] / m_k_strides[i];
linidx[0] += idx0 * m_contract_strides[i];
linidx[1] += idx1 * m_contract_strides[i];
contract_val[0] -= idx0 * m_k_strides[i];
contract_val[1] -= idx1 * m_k_strides[i];
}
if (side == Rhs && inner_dim_contiguous) {
eigen_assert(m_contract_strides[0] == 1);
linidx[0] += contract_val[0];
linidx[1] += contract_val[1];
} else {
linidx[0] += contract_val[0] * m_contract_strides[0];
linidx[1] += contract_val[1] * m_contract_strides[0];
}
}
return IndexPair<Index>(linidx[0], linidx[1]);
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index firstAligned(Index size) const {
// Only claim alignment when we can compute the actual stride (ie when we're
// dealing with the lhs with inner_dim_contiguous. This is because the
// matrix-vector product relies on the stride when dealing with aligned inputs.
return (Alignment == Aligned) && (side == Lhs) && inner_dim_contiguous ? 0 : size;
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index stride() const {
return ((side == Lhs) && inner_dim_contiguous && array_size<contract_t>::value > 0) ? m_contract_strides[0] : 1;
}
protected:
CoeffLoader<Tensor, Tensor::RawAccess> m_tensor;
const nocontract_t m_nocontract_strides;
const nocontract_t m_ij_strides;
const contract_t m_contract_strides;
const contract_t m_k_strides;
};
template<typename Scalar, typename Index, int side,
typename Tensor,
typename nocontract_t, typename contract_t,
int packet_size, bool inner_dim_contiguous,
bool inner_dim_reordered, int Alignment>
class BaseTensorContractionMapper : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, Alignment>
{
public:
typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, Alignment> ParentMapper;
EIGEN_DEVICE_FUNC
BaseTensorContractionMapper(const Tensor& tensor,
const nocontract_t& nocontract_strides,
const nocontract_t& ij_strides,
const contract_t& contract_strides,
const contract_t& k_strides) :
ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }
typedef typename Tensor::PacketReturnType Packet;
typedef typename unpacket_traits<Packet>::half HalfPacket;
template <int AlignmentType>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Packet loadPacket(Index i, Index j) const {
// whole method makes column major assumption
// don't need to add offsets for now (because operator handles that)
// current code assumes packet size must be a multiple of 2
EIGEN_STATIC_ASSERT(packet_size % 2 == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
if (Tensor::PacketAccess && inner_dim_contiguous && !inner_dim_reordered) {
const Index index = this->computeIndex(i, j);
eigen_assert(this->computeIndex(i+packet_size-1, j) == index + packet_size-1);
return this->m_tensor.template packet<AlignmentType>(index);
}
const IndexPair<Index> indexPair = this->computeIndexPair(i, j, packet_size - 1);
const Index first = indexPair.first;
const Index last = indexPair.second;
// We can always do optimized packet reads from left hand side right now, because
// the vertical matrix dimension on the left hand side is never contracting.
// On the right hand side we need to check if the contracting dimensions may have
// been shuffled first.
if (Tensor::PacketAccess &&
(side == Lhs || internal::array_size<contract_t>::value <= 1 || !inner_dim_reordered) &&
(last - first) == (packet_size - 1)) {
return this->m_tensor.template packet<AlignmentType>(first);
}
EIGEN_ALIGN_MAX Scalar data[packet_size];
data[0] = this->m_tensor.coeff(first);
for (Index k = 1; k < packet_size - 1; k += 2) {
const IndexPair<Index> internal_pair = this->computeIndexPair(i + k, j, 1);
data[k] = this->m_tensor.coeff(internal_pair.first);
data[k + 1] = this->m_tensor.coeff(internal_pair.second);
}
data[packet_size - 1] = this->m_tensor.coeff(last);
return pload<Packet>(data);
}
template <int AlignmentType>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE HalfPacket loadHalfPacket(Index i, Index j) const {
// whole method makes column major assumption
// don't need to add offsets for now (because operator handles that)
const Index half_packet_size = unpacket_traits<HalfPacket>::size;
if (half_packet_size == packet_size) {
return loadPacket<AlignmentType>(i, j);
}
EIGEN_ALIGN_MAX Scalar data[half_packet_size];
for (Index k = 0; k < half_packet_size; k++) {
data[k] = operator()(i + k, j);
}
return pload<HalfPacket>(data);
}
};
template<typename Scalar, typename Index, int side,
typename Tensor,
typename nocontract_t, typename contract_t,
bool inner_dim_contiguous,
bool inner_dim_reordered, int Alignment>
class BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, inner_dim_reordered, Alignment> : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, Alignment>
{
public:
typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, Alignment> ParentMapper;
EIGEN_DEVICE_FUNC
BaseTensorContractionMapper(const Tensor& tensor,
const nocontract_t& nocontract_strides,
const nocontract_t& ij_strides,
const contract_t& contract_strides,
const contract_t& k_strides) :
ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }
typedef typename Tensor::PacketReturnType Packet;
template <int> EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Packet loadPacket(Index i, Index j) const {
EIGEN_ALIGN_MAX Scalar data[1];
data[0] = this->m_tensor.coeff(this->computeIndex(i, j));
return pload<typename Tensor::PacketReturnType>(data);
}
template <int> EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Packet loadHalfPacket(Index i, Index j) const {
return loadPacket(i, j);
}
};
template<typename Scalar, typename Index, int side,
typename Tensor,
typename nocontract_t, typename contract_t,
int packet_size,
bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
class TensorContractionSubMapper {
public:
typedef typename Tensor::PacketReturnType Packet;
typedef typename unpacket_traits<Packet>::half HalfPacket;
typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> ParentMapper;
typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Self;
typedef Self LinearMapper;
enum {
// We can use direct offsets iff the parent mapper supports then and we can compute the strides.
// TODO: we should also enable direct offsets for the Rhs case.
UseDirectOffsets = ParentMapper::DirectOffsets && (side == Lhs) && inner_dim_contiguous && (array_size<contract_t>::value > 0)
};
EIGEN_DEVICE_FUNC TensorContractionSubMapper(const ParentMapper& base_mapper, Index vert_offset, Index horiz_offset)
: m_base_mapper(base_mapper), m_vert_offset(vert_offset), m_horiz_offset(horiz_offset) {
// Bake the offsets into the buffer used by the base mapper whenever possible. This avoids the need to recompute
// this offset every time we attempt to access a coefficient.
if (UseDirectOffsets) {
Index stride = m_base_mapper.stride();
m_base_mapper.offsetBuffer(vert_offset + horiz_offset * stride);
}
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const {
if (UseDirectOffsets) {
return m_base_mapper(i, 0);
}
return m_base_mapper(i + m_vert_offset, m_horiz_offset);
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i, Index j) const {
if (UseDirectOffsets) {
return m_base_mapper(i, j);
}
return m_base_mapper(i + m_vert_offset, j + m_horiz_offset);
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const {
if (UseDirectOffsets) {
return m_base_mapper.template loadPacket<Alignment>(i, 0);
}
return m_base_mapper.template loadPacket<Alignment>(i + m_vert_offset, m_horiz_offset);
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i, Index j) const {
if (UseDirectOffsets) {
return m_base_mapper.template loadPacket<Alignment>(i, j);
}
return m_base_mapper.template loadPacket<Alignment>(i + m_vert_offset, j + m_horiz_offset);
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HalfPacket loadHalfPacket(Index i) const {
if (UseDirectOffsets) {
return m_base_mapper.template loadHalfPacket<Alignment>(i, 0);
}
return m_base_mapper.template loadHalfPacket<Alignment>(i + m_vert_offset, m_horiz_offset);
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, Packet p) const {
if (UseDirectOffsets) {
m_base_mapper.storePacket(i, 0, p);
}
m_base_mapper.storePacket(i + m_vert_offset, m_horiz_offset, p);
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const {
if (UseDirectOffsets) {
return LinearMapper(m_base_mapper, i, j);
}
return LinearMapper(m_base_mapper, i + m_vert_offset, j + m_horiz_offset);
}
template <typename PacketT, int AlignmentType>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i) const {
EIGEN_STATIC_ASSERT((internal::is_same<PacketT, Packet>::value), YOU_MADE_A_PROGRAMMING_MISTAKE);
const int ActualAlignment = (AlignmentType == Aligned) && (Alignment == Aligned) ? Aligned : Unaligned;
if (UseDirectOffsets) {
return m_base_mapper.template loadPacket<ActualAlignment>(i, 0);
}
return m_base_mapper.template loadPacket<ActualAlignment>(i + m_vert_offset, m_horiz_offset);
}
template <typename Packet>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool aligned(Index) const {
return false;
}
private:
ParentMapper m_base_mapper;
const Index m_vert_offset;
const Index m_horiz_offset;
};
template<typename Scalar_, typename Index, int side,
typename Tensor,
typename nocontract_t, typename contract_t,
int packet_size,
bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
class TensorContractionInputMapper
: public BaseTensorContractionMapper<Scalar_, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> {
public:
typedef Scalar_ Scalar;
typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Base;
typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> SubMapper;
typedef SubMapper VectorMapper;
EIGEN_DEVICE_FUNC TensorContractionInputMapper(const Tensor& tensor,
const nocontract_t& nocontract_strides,
const nocontract_t& ij_strides,
const contract_t& contract_strides,
const contract_t& k_strides)
: Base(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE SubMapper getSubMapper(Index i, Index j) const {
return SubMapper(*this, i, j);
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const {
return VectorMapper(*this, i, j);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H