blob: e020d076f02db07f9be90b8c466584eb0fbd362a [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H
#define EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H
namespace Eigen {
/** \class TensorCustomUnaryOp
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor custom class.
*
*
*/
namespace internal {
template<typename CustomUnaryFunc, typename XprType>
struct traits<TensorCustomUnaryOp<CustomUnaryFunc, XprType> >
{
typedef typename XprType::Scalar Scalar;
typedef typename XprType::StorageKind StorageKind;
typedef typename XprType::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
static const int NumDimensions = traits<XprType>::NumDimensions;
static const int Layout = traits<XprType>::Layout;
};
template<typename CustomUnaryFunc, typename XprType>
struct eval<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Eigen::Dense>
{
typedef const TensorCustomUnaryOp<CustomUnaryFunc, XprType>& type;
};
template<typename CustomUnaryFunc, typename XprType>
struct nested<TensorCustomUnaryOp<CustomUnaryFunc, XprType> >
{
typedef TensorCustomUnaryOp<CustomUnaryFunc, XprType> type;
};
} // end namespace internal
template<typename CustomUnaryFunc, typename XprType>
class TensorCustomUnaryOp : public TensorBase<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, ReadOnlyAccessors>
{
public:
typedef typename internal::traits<TensorCustomUnaryOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename internal::nested<TensorCustomUnaryOp>::type Nested;
typedef typename internal::traits<TensorCustomUnaryOp>::StorageKind StorageKind;
typedef typename internal::traits<TensorCustomUnaryOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCustomUnaryOp(const XprType& expr, const CustomUnaryFunc& func)
: m_expr(expr), m_func(func) {}
EIGEN_DEVICE_FUNC
const CustomUnaryFunc& func() const { return m_func; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_expr; }
protected:
typename XprType::Nested m_expr;
const CustomUnaryFunc m_func;
};
// Eval as rvalue
template<typename CustomUnaryFunc, typename XprType, typename Device>
struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Device>
{
typedef TensorCustomUnaryOp<CustomUnaryFunc, XprType> ArgType;
typedef typename internal::traits<ArgType>::Index Index;
static const int NumDims = internal::traits<ArgType>::NumDimensions;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename internal::remove_const<typename ArgType::Scalar>::type Scalar;
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
enum {
IsAligned = false,
PacketAccess = (internal::packet_traits<Scalar>::size > 1),
BlockAccess = false,
Layout = TensorEvaluator<XprType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const ArgType& op, const Device& device)
: m_op(op), m_device(device), m_result(NULL)
{
m_dimensions = op.func().dimensions(op.expression());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
if (data) {
evalTo(data);
return false;
} else {
m_result = static_cast<CoeffReturnType*>(
m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
evalTo(m_result);
return true;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
if (m_result != NULL) {
m_device.deallocate(m_result);
m_result = NULL;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
return m_result[index];
}
template<int LoadMode>
EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
// TODO(rmlarsen): Extend CustomOp API to return its cost estimate.
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_result; }
protected:
EIGEN_DEVICE_FUNC void evalTo(Scalar* data) {
TensorMap<Tensor<CoeffReturnType, NumDims, Layout, Index> > result(
data, m_dimensions);
m_op.func().eval(m_op.expression(), result, m_device);
}
Dimensions m_dimensions;
const ArgType m_op;
const Device& m_device;
CoeffReturnType* m_result;
};
/** \class TensorCustomBinaryOp
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor custom class.
*
*
*/
namespace internal {
template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
struct traits<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> >
{
typedef typename internal::promote_storage_type<typename LhsXprType::Scalar,
typename RhsXprType::Scalar>::ret Scalar;
typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType,
typename RhsXprType::CoeffReturnType>::ret CoeffReturnType;
typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
typename traits<RhsXprType>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<LhsXprType>::Index,
typename traits<RhsXprType>::Index>::type Index;
typedef typename LhsXprType::Nested LhsNested;
typedef typename RhsXprType::Nested RhsNested;
typedef typename remove_reference<LhsNested>::type _LhsNested;
typedef typename remove_reference<RhsNested>::type _RhsNested;
static const int NumDimensions = traits<LhsXprType>::NumDimensions;
static const int Layout = traits<LhsXprType>::Layout;
};
template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
struct eval<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Eigen::Dense>
{
typedef const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>& type;
};
template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
struct nested<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> >
{
typedef TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> type;
};
} // end namespace internal
template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
class TensorCustomBinaryOp : public TensorBase<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, ReadOnlyAccessors>
{
public:
typedef typename internal::traits<TensorCustomBinaryOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename internal::traits<TensorCustomBinaryOp>::CoeffReturnType CoeffReturnType;
typedef typename internal::nested<TensorCustomBinaryOp>::type Nested;
typedef typename internal::traits<TensorCustomBinaryOp>::StorageKind StorageKind;
typedef typename internal::traits<TensorCustomBinaryOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCustomBinaryOp(const LhsXprType& lhs, const RhsXprType& rhs, const CustomBinaryFunc& func)
: m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_func(func) {}
EIGEN_DEVICE_FUNC
const CustomBinaryFunc& func() const { return m_func; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename LhsXprType::Nested>::type&
lhsExpression() const { return m_lhs_xpr; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename RhsXprType::Nested>::type&
rhsExpression() const { return m_rhs_xpr; }
protected:
typename LhsXprType::Nested m_lhs_xpr;
typename RhsXprType::Nested m_rhs_xpr;
const CustomBinaryFunc m_func;
};
// Eval as rvalue
template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType, typename Device>
struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Device>
{
typedef TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> XprType;
typedef typename internal::traits<XprType>::Index Index;
static const int NumDims = internal::traits<XprType>::NumDimensions;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename XprType::Scalar Scalar;
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
enum {
IsAligned = false,
PacketAccess = (internal::packet_traits<Scalar>::size > 1),
BlockAccess = false,
Layout = TensorEvaluator<LhsXprType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_op(op), m_device(device), m_result(NULL)
{
m_dimensions = op.func().dimensions(op.lhsExpression(), op.rhsExpression());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
if (data) {
evalTo(data);
return false;
} else {
m_result = static_cast<Scalar *>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
evalTo(m_result);
return true;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
if (m_result != NULL) {
m_device.deallocate(m_result);
m_result = NULL;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
return m_result[index];
}
template<int LoadMode>
EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
// TODO(rmlarsen): Extend CustomOp API to return its cost estimate.
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_result; }
protected:
EIGEN_DEVICE_FUNC void evalTo(Scalar* data) {
TensorMap<Tensor<Scalar, NumDims, Layout> > result(data, m_dimensions);
m_op.func().eval(m_op.lhsExpression(), m_op.rhsExpression(), result, m_device);
}
Dimensions m_dimensions;
const XprType m_op;
const Device& m_device;
CoeffReturnType* m_result;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H