blob: 41d0d0022fd36bbebb6c13db4527e0fa6fd878cb [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
// Copyright (C) 2016 Mehdi Goli, Codeplay Software Ltd <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
namespace Eigen {
/** \class TensorReduction
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor reduction class.
*
*/
namespace internal {
template<typename Op, typename Dims, typename XprType,template <class> class MakePointer_ >
struct traits<TensorReductionOp<Op, Dims, XprType, MakePointer_> >
: traits<XprType>
{
typedef traits<XprType> XprTraits;
typedef typename XprTraits::Scalar Scalar;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value;
static const int Layout = XprTraits::Layout;
template <class T> struct MakePointer {
// Intermediate typedef to workaround MSVC issue.
typedef MakePointer_<T> MakePointerT;
typedef typename MakePointerT::Type Type;
};
};
template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
struct eval<TensorReductionOp<Op, Dims, XprType, MakePointer_>, Eigen::Dense>
{
typedef const TensorReductionOp<Op, Dims, XprType, MakePointer_>& type;
};
template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
struct nested<TensorReductionOp<Op, Dims, XprType, MakePointer_>, 1, typename eval<TensorReductionOp<Op, Dims, XprType, MakePointer_> >::type>
{
typedef TensorReductionOp<Op, Dims, XprType, MakePointer_> type;
};
template <typename OutputDims> struct DimInitializer {
template <typename InputDims, typename ReducedDims> EIGEN_DEVICE_FUNC
static void run(const InputDims& input_dims,
const array<bool, internal::array_size<InputDims>::value>& reduced,
OutputDims* output_dims, ReducedDims* reduced_dims) {
const int NumInputDims = internal::array_size<InputDims>::value;
int outputIndex = 0;
int reduceIndex = 0;
for (int i = 0; i < NumInputDims; ++i) {
if (reduced[i]) {
(*reduced_dims)[reduceIndex] = input_dims[i];
++reduceIndex;
} else {
(*output_dims)[outputIndex] = input_dims[i];
++outputIndex;
}
}
}
};
template <> struct DimInitializer<Sizes<> > {
template <typename InputDims, typename Index, size_t Rank> EIGEN_DEVICE_FUNC
static void run(const InputDims& input_dims, const array<bool, Rank>&,
Sizes<>*, array<Index, Rank>* reduced_dims) {
const int NumInputDims = internal::array_size<InputDims>::value;
for (int i = 0; i < NumInputDims; ++i) {
(*reduced_dims)[i] = input_dims[i];
}
}
};
template <typename ReducedDims, int NumTensorDims, int Layout>
struct are_inner_most_dims {
static const bool value = false;
};
template <typename ReducedDims, int NumTensorDims, int Layout>
struct preserve_inner_most_dims {
static const bool value = false;
};
#if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES
template <typename ReducedDims, int NumTensorDims>
struct are_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
static const bool tmp2 = index_statically_eq<ReducedDims>(0, 0);
static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value-1, array_size<ReducedDims>::value-1);
static const bool value = tmp1 & tmp2 & tmp3;
};
template <typename ReducedDims, int NumTensorDims>
struct are_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
static const bool tmp2 = index_statically_eq<ReducedDims>(0, NumTensorDims - array_size<ReducedDims>::value);
static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
static const bool value = tmp1 & tmp2 & tmp3;
};
template <typename ReducedDims, int NumTensorDims>
struct preserve_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
static const bool tmp2 = index_statically_gt<ReducedDims>(0, 0);
static const bool value = tmp1 & tmp2;
};
template <typename ReducedDims, int NumTensorDims>
struct preserve_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
static const bool tmp2 = index_statically_lt<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
static const bool value = tmp1 & tmp2;
};
#endif
template <int DimIndex, typename Self, typename Op>
struct GenericDimReducer {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
for (int j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
GenericDimReducer<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
}
}
};
template <typename Self, typename Op>
struct GenericDimReducer<0, Self, Op> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
for (int j = 0; j < self.m_reducedDims[0]; ++j) {
const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
reducer.reduce(self.m_impl.coeff(input), accum);
}
}
};
template <typename Self, typename Op>
struct GenericDimReducer<-1, Self, Op> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index index, Op& reducer, typename Self::CoeffReturnType* accum) {
reducer.reduce(self.m_impl.coeff(index), accum);
}
};
template <typename Self, typename Op, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
struct InnerMostDimReducer {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
typename Self::CoeffReturnType accum = reducer.initialize();
for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
}
return reducer.finalize(accum);
}
};
template <typename Self, typename Op>
struct InnerMostDimReducer<Self, Op, true> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
const int packetSize = internal::unpacket_traits<typename Self::PacketReturnType>::size;
const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize;
typename Self::PacketReturnType p = reducer.template initializePacket<typename Self::PacketReturnType>();
for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) {
reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &p);
}
typename Self::CoeffReturnType accum = reducer.initialize();
for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) {
reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
}
return reducer.finalizeBoth(accum, p);
}
};
template <int DimIndex, typename Self, typename Op, bool vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
struct InnerMostDimPreserver {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
eigen_assert(false && "should never be called");
}
};
template <int DimIndex, typename Self, typename Op>
struct InnerMostDimPreserver<DimIndex, Self, Op, true> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
for (typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
InnerMostDimPreserver<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
}
}
};
template <typename Self, typename Op>
struct InnerMostDimPreserver<0, Self, Op, true> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
for (typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) {
const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum);
}
}
};
template <typename Self, typename Op>
struct InnerMostDimPreserver<-1, Self, Op, true> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
eigen_assert(false && "should never be called");
}
};
// Default full reducer
template <typename Self, typename Op, typename Device, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
struct FullReducer {
static const bool HasOptimizedImplementation = false;
static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::CoeffReturnType* output) {
const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions());
*output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
}
};
#ifdef EIGEN_USE_THREADS
// Multithreaded full reducers
template <typename Self, typename Op,
bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
struct FullReducerShard {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Self& self, typename Self::Index firstIndex,
typename Self::Index numValuesToReduce, Op& reducer,
typename Self::CoeffReturnType* output) {
*output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
self, firstIndex, numValuesToReduce, reducer);
}
};
// Multithreaded full reducer
template <typename Self, typename Op, bool Vectorizable>
struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> {
static const bool HasOptimizedImplementation = !Op::IsStateful;
static const int PacketSize =
unpacket_traits<typename Self::PacketReturnType>::size;
// launch one reducer per thread and accumulate the result.
static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device,
typename Self::CoeffReturnType* output) {
typedef typename Self::Index Index;
const Index num_coeffs = array_prod(self.m_impl.dimensions());
if (num_coeffs == 0) {
*output = reducer.finalize(reducer.initialize());
return;
}
const TensorOpCost cost =
self.m_impl.costPerCoeff(Vectorizable) +
TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable,
PacketSize);
const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
num_coeffs, cost, device.numThreads());
if (num_threads == 1) {
*output =
InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
return;
}
const Index blocksize =
std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
eigen_assert(num_coeffs >= numblocks * blocksize);
Barrier barrier(internal::convert_index<unsigned int>(numblocks));
MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
for (Index i = 0; i < numblocks; ++i) {
device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run,
self, i * blocksize, blocksize, reducer,
&shards[i]);
}
typename Self::CoeffReturnType finalShard;
if (numblocks * blocksize < num_coeffs) {
finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
self, numblocks * blocksize, num_coeffs - numblocks * blocksize,
reducer);
} else {
finalShard = reducer.initialize();
}
barrier.Wait();
for (Index i = 0; i < numblocks; ++i) {
reducer.reduce(shards[i], &finalShard);
}
*output = reducer.finalize(finalShard);
}
};
#endif
// Default inner reducer
template <typename Self, typename Op, typename Device>
struct InnerReducer {
static const bool HasOptimizedImplementation = false;
EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
eigen_assert(false && "Not implemented");
return true;
}
};
// Default outer reducer
template <typename Self, typename Op, typename Device>
struct OuterReducer {
static const bool HasOptimizedImplementation = false;
EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
eigen_assert(false && "Not implemented");
return true;
}
};
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
template <int B, int N, typename S, typename R, typename I>
__global__ void FullReductionKernel(R, const S, I, typename S::CoeffReturnType*, unsigned int*);
#ifdef EIGEN_HAS_CUDA_FP16
template <typename S, typename R, typename I>
__global__ void ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*);
template <int B, int N, typename S, typename R, typename I>
__global__ void FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
template <int NPT, typename S, typename R, typename I>
__global__ void InnerReductionKernelHalfFloat(R, const S, I, I, half*);
#endif
template <int NPT, typename S, typename R, typename I>
__global__ void InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
template <int NPT, typename S, typename R, typename I>
__global__ void OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
#endif
} // end namespace internal
template <typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
class TensorReductionOp : public TensorBase<TensorReductionOp<Op, Dims, XprType, MakePointer_>, ReadOnlyAccessors> {
public:
typedef typename Eigen::internal::traits<TensorReductionOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
typedef typename Eigen::internal::nested<TensorReductionOp>::type Nested;
typedef typename Eigen::internal::traits<TensorReductionOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorReductionOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims)
{ }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer)
{ }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const XprType& expression() const { return m_expr; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dims& dims() const { return m_dims; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Op& reducer() const { return m_reducer; }
protected:
typename XprType::Nested m_expr;
const Dims m_dims;
const Op m_reducer;
};
// Eval as rvalue
template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
{
typedef TensorReductionOp<Op, Dims, ArgType, MakePointer_> XprType;
typedef typename XprType::Index Index;
typedef ArgType ChildType;
typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
static const int NumInputDims = internal::array_size<InputDimensions>::value;
static const int NumReducedDims = internal::array_size<Dims>::value;
static const int NumOutputDims = NumInputDims - NumReducedDims;
typedef typename internal::conditional<NumOutputDims==0, Sizes<>, DSizes<Index, NumOutputDims> >::type Dimensions;
typedef typename XprType::Scalar Scalar;
typedef TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Self;
static const bool InputPacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess;
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
enum {
IsAligned = false,
PacketAccess = Self::InputPacketAccess && Op::PacketAccess,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
static const bool ReducingInnerMostDims = internal::are_inner_most_dims<Dims, NumInputDims, Layout>::value;
static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims<Dims, NumInputDims, Layout>::value;
static const bool RunningFullReduction = (NumOutputDims==0);
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device), m_xpr_dims(op.dims())
{
EIGEN_STATIC_ASSERT((NumInputDims >= NumReducedDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)),
YOU_MADE_A_PROGRAMMING_MISTAKE);
// Build the bitmap indicating if an input dimension is reduced or not.
for (int i = 0; i < NumInputDims; ++i) {
m_reduced[i] = false;
}
for (int i = 0; i < NumReducedDims; ++i) {
eigen_assert(op.dims()[i] >= 0);
eigen_assert(op.dims()[i] < NumInputDims);
m_reduced[op.dims()[i]] = true;
}
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
internal::DimInitializer<Dimensions>::run(input_dims, m_reduced, &m_dimensions, &m_reducedDims);
// Precompute output strides.
if (NumOutputDims > 0) {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_outputStrides[0] = 1;
for (int i = 1; i < NumOutputDims; ++i) {
m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
}
} else {
m_outputStrides.back() = 1;
for (int i = NumOutputDims - 2; i >= 0; --i) {
m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
}
}
}
// Precompute input strides.
if (NumInputDims > 0) {
array<Index, NumInputDims> input_strides;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
input_strides[0] = 1;
for (int i = 1; i < NumInputDims; ++i) {
input_strides[i] = input_strides[i-1] * input_dims[i-1];
}
} else {
input_strides.back() = 1;
for (int i = NumInputDims - 2; i >= 0; --i) {
input_strides[i] = input_strides[i + 1] * input_dims[i + 1];
}
}
int outputIndex = 0;
int reduceIndex = 0;
for (int i = 0; i < NumInputDims; ++i) {
if (m_reduced[i]) {
m_reducedStrides[reduceIndex] = input_strides[i];
++reduceIndex;
} else {
m_preservedStrides[outputIndex] = input_strides[i];
++outputIndex;
}
}
}
// Special case for full reductions
if (NumOutputDims == 0) {
m_preservedStrides[0] = internal::array_prod(input_dims);
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool evalSubExprsIfNeeded(typename MakePointer_<CoeffReturnType>::Type data) {
m_impl.evalSubExprsIfNeeded(NULL);
// Use the FullReducer if possible.
if ((RunningFullReduction && RunningOnSycl) ||(RunningFullReduction &&
internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
!RunningOnGPU))) {
bool need_assign = false;
if (!data) {
m_result = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType)));
data = m_result;
need_assign = true;
}
Op reducer(m_reducer);
internal::FullReducer<Self, Op, Device>::run(*this, reducer, m_device, data);
return need_assign;
}
else if(RunningOnSycl){
const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
if (!data) {
data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve));
m_result = data;
}
Op reducer(m_reducer);
internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
return (m_result != NULL);
}
// Attempt to use an optimized reduction.
else if (RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) {
bool reducing_inner_dims = true;
for (int i = 0; i < NumReducedDims; ++i) {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
reducing_inner_dims &= m_reduced[i];
} else {
reducing_inner_dims &= m_reduced[NumInputDims - 1 - i];
}
}
if (internal::InnerReducer<Self, Op, Device>::HasOptimizedImplementation &&
(reducing_inner_dims || ReducingInnerMostDims)) {
const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
if (!data) {
if (num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 128) {
data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve));
m_result = data;
}
else {
return true;
}
}
Op reducer(m_reducer);
if (internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
if (m_result) {
m_device.deallocate(m_result);
m_result = NULL;
}
return true;
} else {
return (m_result != NULL);
}
}
bool preserving_inner_dims = true;
for (int i = 0; i < NumReducedDims; ++i) {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
preserving_inner_dims &= m_reduced[NumInputDims - 1 - i];
} else {
preserving_inner_dims &= m_reduced[i];
}
}
if (internal::OuterReducer<Self, Op, Device>::HasOptimizedImplementation &&
preserving_inner_dims) {
const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
if (!data) {
if (num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 32) {
data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve));
m_result = data;
}
else {
return true;
}
}
Op reducer(m_reducer);
if (internal::OuterReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
if (m_result) {
m_device.deallocate(m_result);
m_result = NULL;
}
return true;
} else {
return (m_result != NULL);
}
}
}
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
if (m_result) {
m_device.deallocate(m_result);
m_result = NULL;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
if ((RunningOnSycl || RunningFullReduction || RunningOnGPU) && m_result) {
return *(m_result + index);
}
Op reducer(m_reducer);
if (ReducingInnerMostDims || RunningFullReduction) {
const Index num_values_to_reduce =
(static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
return internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstInput(index),
num_values_to_reduce, reducer);
} else {
typename Self::CoeffReturnType accum = reducer.initialize();
internal::GenericDimReducer<NumReducedDims-1, Self, Op>::reduce(*this, firstInput(index), reducer, &accum);
return reducer.finalize(accum);
}
}
// TODO(bsteiner): provide a more efficient implementation.
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index + PacketSize - 1 < Index(internal::array_prod(dimensions())));
if (RunningOnGPU && m_result) {
return internal::pload<PacketReturnType>(m_result + index);
}
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
if (ReducingInnerMostDims) {
const Index num_values_to_reduce =
(static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
const Index firstIndex = firstInput(index);
for (Index i = 0; i < PacketSize; ++i) {
Op reducer(m_reducer);
values[i] = internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstIndex + i * num_values_to_reduce,
num_values_to_reduce, reducer);
}
} else if (PreservingInnerMostDims) {
const Index firstIndex = firstInput(index);
const int innermost_dim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : NumOutputDims - 1;
// TBD: extend this the the n innermost dimensions that we preserve.
if (((firstIndex % m_dimensions[innermost_dim]) + PacketSize - 1) < m_dimensions[innermost_dim]) {
Op reducer(m_reducer);
typename Self::PacketReturnType accum = reducer.template initializePacket<typename Self::PacketReturnType>();
internal::InnerMostDimPreserver<NumReducedDims-1, Self, Op>::reduce(*this, firstIndex, reducer, &accum);
return reducer.finalizePacket(accum);
} else {
for (int i = 0; i < PacketSize; ++i) {
values[i] = coeff(index + i);
}
}
} else {
for (int i = 0; i < PacketSize; ++i) {
values[i] = coeff(index + i);
}
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
}
// Must be called after evalSubExprsIfNeeded().
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
if (RunningFullReduction && m_result) {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
} else {
const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
const double compute_cost = num_values_to_reduce * internal::functor_traits<Op>::Cost;
return m_impl.costPerCoeff(vectorized) * num_values_to_reduce +
TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
}
}
EIGEN_DEVICE_FUNC typename MakePointer_<Scalar>::Type data() const { return m_result; }
/// required by sycl in order to extract the accessor
const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
/// added for sycl in order to construct the buffer from the sycl device
const Device& device() const{return m_device;}
/// added for sycl in order to re-construct the reduction eval on the device for the sub-kernel
const Dims& xprDims() const {return m_xpr_dims;}
private:
template <int, typename, typename> friend struct internal::GenericDimReducer;
template <typename, typename, bool> friend struct internal::InnerMostDimReducer;
template <int, typename, typename, bool> friend struct internal::InnerMostDimPreserver;
template <typename S, typename O, typename D, bool V> friend struct internal::FullReducer;
#ifdef EIGEN_USE_THREADS
template <typename S, typename O, bool V> friend struct internal::FullReducerShard;
#endif
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernel(R, const S, I, typename S::CoeffReturnType*, unsigned int*);
#ifdef EIGEN_HAS_CUDA_FP16
template <typename S, typename R, typename I> friend void internal::ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*);
template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernelHalfFloat(R, const S, I, I, half*);
#endif
template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
template <int NPT, typename S, typename R, typename I> friend void internal::OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
#endif
template <typename S, typename O, typename D> friend struct internal::InnerReducer;
// Returns the Index in the input tensor of the first value that needs to be
// used to compute the reduction at output index "index".
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
if (ReducingInnerMostDims) {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
return index * m_preservedStrides[0];
} else {
return index * m_preservedStrides[NumPreservedStrides - 1];
}
}
// TBD: optimize the case where we preserve the innermost dimensions.
Index startInput = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumOutputDims - 1; i > 0; --i) {
// This is index_i in the output tensor.
const Index idx = index / m_outputStrides[i];
startInput += idx * m_preservedStrides[i];
index -= idx * m_outputStrides[i];
}
if (PreservingInnerMostDims) {
eigen_assert(m_preservedStrides[0] == 1);
startInput += index;
} else {
startInput += index * m_preservedStrides[0];
}
} else {
for (int i = 0; i < NumOutputDims - 1; ++i) {
// This is index_i in the output tensor.
const Index idx = index / m_outputStrides[i];
startInput += idx * m_preservedStrides[i];
index -= idx * m_outputStrides[i];
}
if (PreservingInnerMostDims) {
eigen_assert(m_preservedStrides[NumPreservedStrides - 1] == 1);
startInput += index;
} else {
startInput += index * m_preservedStrides[NumPreservedStrides - 1];
}
}
return startInput;
}
// Bitmap indicating if an input dimension is reduced or not.
array<bool, NumInputDims> m_reduced;
// Dimensions of the output of the operation.
Dimensions m_dimensions;
// Precomputed strides for the output tensor.
array<Index, NumOutputDims> m_outputStrides;
// Subset of strides of the input tensor for the non-reduced dimensions.
// Indexed by output dimensions.
static const int NumPreservedStrides = max_n_1<NumOutputDims>::size;
array<Index, NumPreservedStrides> m_preservedStrides;
// Subset of strides of the input tensor for the reduced dimensions.
// Indexed by reduced dimensions.
array<Index, NumReducedDims> m_reducedStrides;
// Size of the input dimensions that are reduced.
// Indexed by reduced dimensions.
array<Index, NumReducedDims> m_reducedDims;
// Evaluator for the input expression.
TensorEvaluator<ArgType, Device> m_impl;
// Operation to apply for computing the reduction.
Op m_reducer;
// For full reductions
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
static const bool RunningOnGPU = internal::is_same<Device, Eigen::GpuDevice>::value;
static const bool RunningOnSycl = false;
#elif defined(EIGEN_USE_SYCL)
static const bool RunningOnSycl = internal::is_same<typename internal::remove_all<Device>::type, Eigen::SyclDevice>::value;
static const bool RunningOnGPU = false;
#else
static const bool RunningOnGPU = false;
static const bool RunningOnSycl = false;
#endif
typename MakePointer_<CoeffReturnType>::Type m_result;
const Device& m_device;
const Dims& m_xpr_dims;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H