blob: 5e39af26c1fd2a211b3cec1e856c8c15085e75a1 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef KDBVH_H_INCLUDED
#define KDBVH_H_INCLUDED
namespace Eigen {
namespace internal {
//internal pair class for the BVH--used instead of std::pair because of alignment
template<typename Scalar, int Dim>
struct vector_int_pair
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Dim)
typedef Matrix<Scalar, Dim, 1> VectorType;
vector_int_pair(const VectorType &v, int i) : first(v), second(i) {}
VectorType first;
int second;
};
//these templates help the tree initializer get the bounding boxes either from a provided
//iterator range or using bounding_box in a unified way
template<typename ObjectList, typename VolumeList, typename BoxIter>
struct get_boxes_helper {
void operator()(const ObjectList &objects, BoxIter boxBegin, BoxIter boxEnd, VolumeList &outBoxes)
{
outBoxes.insert(outBoxes.end(), boxBegin, boxEnd);
eigen_assert(outBoxes.size() == objects.size());
EIGEN_ONLY_USED_FOR_DEBUG(objects);
}
};
template<typename ObjectList, typename VolumeList>
struct get_boxes_helper<ObjectList, VolumeList, int> {
void operator()(const ObjectList &objects, int, int, VolumeList &outBoxes)
{
outBoxes.reserve(objects.size());
for(int i = 0; i < (int)objects.size(); ++i)
outBoxes.push_back(bounding_box(objects[i]));
}
};
} // end namespace internal
/** \class KdBVH
* \brief A simple bounding volume hierarchy based on AlignedBox
*
* \param _Scalar The underlying scalar type of the bounding boxes
* \param _Dim The dimension of the space in which the hierarchy lives
* \param _Object The object type that lives in the hierarchy. It must have value semantics. Either bounding_box(_Object) must
* be defined and return an AlignedBox<_Scalar, _Dim> or bounding boxes must be provided to the tree initializer.
*
* This class provides a simple (as opposed to optimized) implementation of a bounding volume hierarchy analogous to a Kd-tree.
* Given a sequence of objects, it computes their bounding boxes, constructs a Kd-tree of their centers
* and builds a BVH with the structure of that Kd-tree. When the elements of the tree are too expensive to be copied around,
* it is useful for _Object to be a pointer.
*/
template<typename _Scalar, int _Dim, typename _Object> class KdBVH
{
public:
enum { Dim = _Dim };
typedef _Object Object;
typedef std::vector<Object, aligned_allocator<Object> > ObjectList;
typedef _Scalar Scalar;
typedef AlignedBox<Scalar, Dim> Volume;
typedef std::vector<Volume, aligned_allocator<Volume> > VolumeList;
typedef int Index;
typedef const int *VolumeIterator; //the iterators are just pointers into the tree's vectors
typedef const Object *ObjectIterator;
KdBVH() {}
/** Given an iterator range over \a Object references, constructs the BVH. Requires that bounding_box(Object) return a Volume. */
template<typename Iter> KdBVH(Iter begin, Iter end) { init(begin, end, 0, 0); } //int is recognized by init as not being an iterator type
/** Given an iterator range over \a Object references and an iterator range over their bounding boxes, constructs the BVH */
template<typename OIter, typename BIter> KdBVH(OIter begin, OIter end, BIter boxBegin, BIter boxEnd) { init(begin, end, boxBegin, boxEnd); }
/** Given an iterator range over \a Object references, constructs the BVH, overwriting whatever is in there currently.
* Requires that bounding_box(Object) return a Volume. */
template<typename Iter> void init(Iter begin, Iter end) { init(begin, end, 0, 0); }
/** Given an iterator range over \a Object references and an iterator range over their bounding boxes,
* constructs the BVH, overwriting whatever is in there currently. */
template<typename OIter, typename BIter> void init(OIter begin, OIter end, BIter boxBegin, BIter boxEnd)
{
objects.clear();
boxes.clear();
children.clear();
objects.insert(objects.end(), begin, end);
int n = static_cast<int>(objects.size());
if(n < 2)
return; //if we have at most one object, we don't need any internal nodes
VolumeList objBoxes;
VIPairList objCenters;
//compute the bounding boxes depending on BIter type
internal::get_boxes_helper<ObjectList, VolumeList, BIter>()(objects, boxBegin, boxEnd, objBoxes);
objCenters.reserve(n);
boxes.reserve(n - 1);
children.reserve(2 * n - 2);
for(int i = 0; i < n; ++i)
objCenters.push_back(VIPair(objBoxes[i].center(), i));
build(objCenters, 0, n, objBoxes, 0); //the recursive part of the algorithm
ObjectList tmp(n);
tmp.swap(objects);
for(int i = 0; i < n; ++i)
objects[i] = tmp[objCenters[i].second];
}
/** \returns the index of the root of the hierarchy */
inline Index getRootIndex() const { return (int)boxes.size() - 1; }
/** Given an \a index of a node, on exit, \a outVBegin and \a outVEnd range over the indices of the volume children of the node
* and \a outOBegin and \a outOEnd range over the object children of the node */
EIGEN_STRONG_INLINE void getChildren(Index index, VolumeIterator &outVBegin, VolumeIterator &outVEnd,
ObjectIterator &outOBegin, ObjectIterator &outOEnd) const
{ //inlining this function should open lots of optimization opportunities to the compiler
if(index < 0) {
outVBegin = outVEnd;
if(!objects.empty())
outOBegin = &(objects[0]);
outOEnd = outOBegin + objects.size(); //output all objects--necessary when the tree has only one object
return;
}
int numBoxes = static_cast<int>(boxes.size());
int idx = index * 2;
if(children[idx + 1] < numBoxes) { //second index is always bigger
outVBegin = &(children[idx]);
outVEnd = outVBegin + 2;
outOBegin = outOEnd;
}
else if(children[idx] >= numBoxes) { //if both children are objects
outVBegin = outVEnd;
outOBegin = &(objects[children[idx] - numBoxes]);
outOEnd = outOBegin + 2;
} else { //if the first child is a volume and the second is an object
outVBegin = &(children[idx]);
outVEnd = outVBegin + 1;
outOBegin = &(objects[children[idx + 1] - numBoxes]);
outOEnd = outOBegin + 1;
}
}
/** \returns the bounding box of the node at \a index */
inline const Volume &getVolume(Index index) const
{
return boxes[index];
}
private:
typedef internal::vector_int_pair<Scalar, Dim> VIPair;
typedef std::vector<VIPair, aligned_allocator<VIPair> > VIPairList;
typedef Matrix<Scalar, Dim, 1> VectorType;
struct VectorComparator //compares vectors, or, more specificall, VIPairs along a particular dimension
{
VectorComparator(int inDim) : dim(inDim) {}
inline bool operator()(const VIPair &v1, const VIPair &v2) const { return v1.first[dim] < v2.first[dim]; }
int dim;
};
//Build the part of the tree between objects[from] and objects[to] (not including objects[to]).
//This routine partitions the objCenters in [from, to) along the dimension dim, recursively constructs
//the two halves, and adds their parent node. TODO: a cache-friendlier layout
void build(VIPairList &objCenters, int from, int to, const VolumeList &objBoxes, int dim)
{
eigen_assert(to - from > 1);
if(to - from == 2) {
boxes.push_back(objBoxes[objCenters[from].second].merged(objBoxes[objCenters[from + 1].second]));
children.push_back(from + (int)objects.size() - 1); //there are objects.size() - 1 tree nodes
children.push_back(from + (int)objects.size());
}
else if(to - from == 3) {
int mid = from + 2;
std::nth_element(objCenters.begin() + from, objCenters.begin() + mid,
objCenters.begin() + to, VectorComparator(dim)); //partition
build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
int idx1 = (int)boxes.size() - 1;
boxes.push_back(boxes[idx1].merged(objBoxes[objCenters[mid].second]));
children.push_back(idx1);
children.push_back(mid + (int)objects.size() - 1);
}
else {
int mid = from + (to - from) / 2;
nth_element(objCenters.begin() + from, objCenters.begin() + mid,
objCenters.begin() + to, VectorComparator(dim)); //partition
build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
int idx1 = (int)boxes.size() - 1;
build(objCenters, mid, to, objBoxes, (dim + 1) % Dim);
int idx2 = (int)boxes.size() - 1;
boxes.push_back(boxes[idx1].merged(boxes[idx2]));
children.push_back(idx1);
children.push_back(idx2);
}
}
std::vector<int> children; //children of x are children[2x] and children[2x+1], indices bigger than boxes.size() index into objects.
VolumeList boxes;
ObjectList objects;
};
} // end namespace Eigen
#endif //KDBVH_H_INCLUDED